Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
from datetime import datetime
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import torchaudio
|
| 9 |
-
import
|
| 10 |
|
| 11 |
try:
|
| 12 |
import mmaudio
|
|
@@ -20,13 +25,7 @@ from mmaudio.model.flow_matching import FlowMatching
|
|
| 20 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 21 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 22 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 27 |
-
|
| 28 |
-
log = logging.getLogger()
|
| 29 |
-
|
| 30 |
device = 'cuda'
|
| 31 |
dtype = torch.bfloat16
|
| 32 |
|
|
@@ -35,83 +34,304 @@ model.download_if_needed()
|
|
| 35 |
output_dir = Path('./output/gradio')
|
| 36 |
|
| 37 |
setup_eval_logging()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
log.info(f'Loaded weights from {model.model_path}')
|
| 46 |
-
|
| 47 |
-
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
| 48 |
-
synchformer_ckpt=model.synchformer_ckpt,
|
| 49 |
-
enable_conditions=True,
|
| 50 |
-
mode=model.mode,
|
| 51 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
| 52 |
-
need_vae_encoder=False)
|
| 53 |
-
feature_utils = feature_utils.to(device, dtype).eval()
|
| 54 |
-
|
| 55 |
-
return net, feature_utils, seq_cfg
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
net, feature_utils, seq_cfg = get_model()
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
@spaces.GPU(duration=120)
|
| 62 |
-
@torch.inference_mode()
|
| 63 |
-
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
| 64 |
-
cfg_strength: float, duration: float):
|
| 65 |
-
|
| 66 |
-
rng = torch.Generator(device=device)
|
| 67 |
-
if seed >= 0:
|
| 68 |
-
rng.manual_seed(seed)
|
| 69 |
-
else:
|
| 70 |
-
rng.seed()
|
| 71 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 72 |
-
|
| 73 |
-
video_info = load_video(video, duration)
|
| 74 |
-
clip_frames = video_info.clip_frames
|
| 75 |
-
sync_frames = video_info.sync_frames
|
| 76 |
-
duration = video_info.duration_sec
|
| 77 |
-
clip_frames = clip_frames.unsqueeze(0)
|
| 78 |
-
sync_frames = sync_frames.unsqueeze(0)
|
| 79 |
-
seq_cfg.duration = duration
|
| 80 |
-
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
| 81 |
-
|
| 82 |
-
audios = generate(clip_frames,
|
| 83 |
-
sync_frames, [prompt],
|
| 84 |
-
negative_text=[negative_prompt],
|
| 85 |
-
feature_utils=feature_utils,
|
| 86 |
-
net=net,
|
| 87 |
-
fm=fm,
|
| 88 |
-
rng=rng,
|
| 89 |
-
cfg_strength=cfg_strength)
|
| 90 |
-
audio = audios.float().cpu()[0]
|
| 91 |
-
|
| 92 |
-
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 93 |
-
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 94 |
-
# output_dir.mkdir(exist_ok=True, parents=True)
|
| 95 |
-
# video_save_path = output_dir / f'{current_time_string}.mp4'
|
| 96 |
-
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
| 97 |
-
log.info(f'Saved video to {video_save_path}')
|
| 98 |
-
return video_save_path
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
video_to_audio_tab = gr.Interface(
|
| 102 |
-
fn=video_to_audio,
|
| 103 |
-
|
| 104 |
-
inputs=[
|
| 105 |
-
gr.Video(),
|
| 106 |
-
gr.Text(label='Prompt'),
|
| 107 |
-
gr.Text(label='Negative prompt', value='music'),
|
| 108 |
-
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
|
| 109 |
-
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
| 110 |
-
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
| 111 |
-
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
| 112 |
-
],
|
| 113 |
-
outputs='playable_video',
|
| 114 |
-
)
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
from datetime import datetime
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
+
import logging
|
| 7 |
+
import requests
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import cv2
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import json
|
| 12 |
+
import spaces
|
| 13 |
import torchaudio
|
| 14 |
+
import tempfile
|
| 15 |
|
| 16 |
try:
|
| 17 |
import mmaudio
|
|
|
|
| 25 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 26 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 27 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 28 |
+
# ์ค๋์ค ๋ชจ๋ธ ์ค์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
device = 'cuda'
|
| 30 |
dtype = torch.bfloat16
|
| 31 |
|
|
|
|
| 34 |
output_dir = Path('./output/gradio')
|
| 35 |
|
| 36 |
setup_eval_logging()
|
| 37 |
+
net, feature_utils, seq_cfg = get_model() # get_model ํจ์๋ ์ด์ ์ ์ ๊ณต๋ ์ฝ๋ ์ฌ์ฉ
|
| 38 |
+
|
| 39 |
+
# ๋ก๊น
์ค์
|
| 40 |
+
logging.basicConfig(level=logging.INFO)
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
# API ์ค์
|
| 44 |
+
CATBOX_USER_HASH = "30f52c895fd9d9cb387eee489"
|
| 45 |
+
REPLICATE_API_TOKEN = os.getenv("API_KEY")
|
| 46 |
+
|
| 47 |
+
def upload_to_catbox(file_path):
|
| 48 |
+
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ํ์ผ ์
๋ก๋"""
|
| 49 |
+
try:
|
| 50 |
+
logger.info(f"Preparing to upload file: {file_path}")
|
| 51 |
+
url = "https://catbox.moe/user/api.php"
|
| 52 |
+
|
| 53 |
+
mime_types = {
|
| 54 |
+
'.jpg': 'image/jpeg',
|
| 55 |
+
'.jpeg': 'image/jpeg',
|
| 56 |
+
'.png': 'image/png',
|
| 57 |
+
'.gif': 'image/gif',
|
| 58 |
+
'.webp': 'image/webp',
|
| 59 |
+
'.jfif': 'image/jpeg'
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
file_extension = Path(file_path).suffix.lower()
|
| 63 |
+
|
| 64 |
+
if file_extension not in mime_types:
|
| 65 |
+
try:
|
| 66 |
+
img = Image.open(file_path)
|
| 67 |
+
if img.mode != 'RGB':
|
| 68 |
+
img = img.convert('RGB')
|
| 69 |
+
|
| 70 |
+
new_path = file_path.rsplit('.', 1)[0] + '.png'
|
| 71 |
+
img.save(new_path, 'PNG')
|
| 72 |
+
file_path = new_path
|
| 73 |
+
file_extension = '.png'
|
| 74 |
+
logger.info(f"Converted image to PNG: {file_path}")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
logger.error(f"Failed to convert image: {str(e)}")
|
| 77 |
+
return None
|
| 78 |
+
|
| 79 |
+
files = {
|
| 80 |
+
'fileToUpload': (
|
| 81 |
+
os.path.basename(file_path),
|
| 82 |
+
open(file_path, 'rb'),
|
| 83 |
+
mime_types.get(file_extension, 'application/octet-stream')
|
| 84 |
+
)
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
data = {
|
| 88 |
+
'reqtype': 'fileupload',
|
| 89 |
+
'userhash': CATBOX_USER_HASH
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
response = requests.post(url, files=files, data=data)
|
| 93 |
+
|
| 94 |
+
if response.status_code == 200 and response.text.startswith('http'):
|
| 95 |
+
file_url = response.text
|
| 96 |
+
logger.info(f"File uploaded successfully: {file_url}")
|
| 97 |
+
return file_url
|
| 98 |
+
else:
|
| 99 |
+
raise Exception(f"Upload failed: {response.text}")
|
| 100 |
+
|
| 101 |
+
except Exception as e:
|
| 102 |
+
logger.error(f"File upload error: {str(e)}")
|
| 103 |
+
return None
|
| 104 |
+
finally:
|
| 105 |
+
if 'new_path' in locals() and os.path.exists(new_path):
|
| 106 |
+
try:
|
| 107 |
+
os.remove(new_path)
|
| 108 |
+
except:
|
| 109 |
+
pass
|
| 110 |
+
|
| 111 |
+
def add_watermark(video_path):
|
| 112 |
+
"""OpenCV๋ฅผ ์ฌ์ฉํ์ฌ ๋น๋์ค์ ์ํฐ๋งํฌ ์ถ๊ฐ"""
|
| 113 |
+
try:
|
| 114 |
+
cap = cv2.VideoCapture(video_path)
|
| 115 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 116 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 117 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 118 |
+
|
| 119 |
+
text = "GiniGEN.AI"
|
| 120 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 121 |
+
font_scale = height * 0.05 / 30
|
| 122 |
+
thickness = 2
|
| 123 |
+
color = (255, 255, 255)
|
| 124 |
+
|
| 125 |
+
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
| 126 |
+
margin = int(height * 0.02)
|
| 127 |
+
x_pos = width - text_width - margin
|
| 128 |
+
y_pos = height - margin
|
| 129 |
+
|
| 130 |
+
output_path = "watermarked_output.mp4"
|
| 131 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 132 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 133 |
+
|
| 134 |
+
while cap.isOpened():
|
| 135 |
+
ret, frame = cap.read()
|
| 136 |
+
if not ret:
|
| 137 |
+
break
|
| 138 |
+
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
| 139 |
+
out.write(frame)
|
| 140 |
+
|
| 141 |
+
cap.release()
|
| 142 |
+
out.release()
|
| 143 |
+
|
| 144 |
+
return output_path
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logger.error(f"Error adding watermark: {str(e)}")
|
| 148 |
+
return video_path
|
| 149 |
+
|
| 150 |
+
def generate_video(image, prompt):
|
| 151 |
+
logger.info("Starting video generation with API")
|
| 152 |
+
try:
|
| 153 |
+
API_KEY = os.getenv("API_KEY", "").strip()
|
| 154 |
+
if not API_KEY:
|
| 155 |
+
return "API key not properly configured"
|
| 156 |
+
|
| 157 |
+
temp_dir = "temp_videos"
|
| 158 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 159 |
+
|
| 160 |
+
image_url = None
|
| 161 |
+
if image:
|
| 162 |
+
image_url = upload_to_catbox(image)
|
| 163 |
+
if not image_url:
|
| 164 |
+
return "Failed to upload image"
|
| 165 |
+
logger.info(f"Input image URL: {image_url}")
|
| 166 |
+
|
| 167 |
+
generation_url = "https://api.minimaxi.chat/v1/video_generation"
|
| 168 |
+
headers = {
|
| 169 |
+
'authorization': f'Bearer {API_KEY}',
|
| 170 |
+
'Content-Type': 'application/json'
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
payload = {
|
| 174 |
+
"model": "video-01",
|
| 175 |
+
"prompt": prompt if prompt else "",
|
| 176 |
+
"prompt_optimizer": True
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
if image_url:
|
| 180 |
+
payload["first_frame_image"] = image_url
|
| 181 |
+
|
| 182 |
+
logger.info(f"Sending request with payload: {payload}")
|
| 183 |
+
|
| 184 |
+
response = requests.post(generation_url, headers=headers, json=payload)
|
| 185 |
+
|
| 186 |
+
if not response.ok:
|
| 187 |
+
error_msg = f"Failed to create video generation task: {response.text}"
|
| 188 |
+
logger.error(error_msg)
|
| 189 |
+
return error_msg
|
| 190 |
+
|
| 191 |
+
response_data = response.json()
|
| 192 |
+
task_id = response_data.get('task_id')
|
| 193 |
+
if not task_id:
|
| 194 |
+
return "Failed to get task ID from response"
|
| 195 |
+
|
| 196 |
+
query_url = "https://api.minimaxi.chat/v1/query/video_generation"
|
| 197 |
+
max_attempts = 30
|
| 198 |
+
attempt = 0
|
| 199 |
+
|
| 200 |
+
while attempt < max_attempts:
|
| 201 |
+
time.sleep(10)
|
| 202 |
+
query_response = requests.get(
|
| 203 |
+
f"{query_url}?task_id={task_id}",
|
| 204 |
+
headers={'authorization': f'Bearer {API_KEY}'}
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if not query_response.ok:
|
| 208 |
+
attempt += 1
|
| 209 |
+
continue
|
| 210 |
+
|
| 211 |
+
status_data = query_response.json()
|
| 212 |
+
status = status_data.get('status')
|
| 213 |
+
|
| 214 |
+
if status == 'Success':
|
| 215 |
+
file_id = status_data.get('file_id')
|
| 216 |
+
if not file_id:
|
| 217 |
+
return "Failed to get file ID"
|
| 218 |
+
|
| 219 |
+
retrieve_url = "https://api.minimaxi.chat/v1/files/retrieve"
|
| 220 |
+
params = {'file_id': file_id}
|
| 221 |
+
|
| 222 |
+
file_response = requests.get(
|
| 223 |
+
retrieve_url,
|
| 224 |
+
headers={'authorization': f'Bearer {API_KEY}'},
|
| 225 |
+
params=params
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if not file_response.ok:
|
| 229 |
+
return "Failed to retrieve video file"
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
file_data = file_response.json()
|
| 233 |
+
download_url = file_data.get('file', {}).get('download_url')
|
| 234 |
+
if not download_url:
|
| 235 |
+
return "Failed to get download URL"
|
| 236 |
+
|
| 237 |
+
result_info = {
|
| 238 |
+
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 239 |
+
"input_image": image_url,
|
| 240 |
+
"output_video_url": download_url,
|
| 241 |
+
"prompt": prompt
|
| 242 |
+
}
|
| 243 |
+
logger.info(f"Video generation result: {json.dumps(result_info, indent=2)}")
|
| 244 |
+
|
| 245 |
+
video_response = requests.get(download_url)
|
| 246 |
+
if not video_response.ok:
|
| 247 |
+
return "Failed to download video"
|
| 248 |
+
|
| 249 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 250 |
+
output_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
| 251 |
+
|
| 252 |
+
with open(output_path, 'wb') as f:
|
| 253 |
+
f.write(video_response.content)
|
| 254 |
+
|
| 255 |
+
final_path = add_watermark(output_path)
|
| 256 |
+
|
| 257 |
+
# ์ค๋์ค ์ฒ๋ฆฌ ์ถ๊ฐ
|
| 258 |
+
try:
|
| 259 |
+
final_path_with_audio = video_to_audio(
|
| 260 |
+
final_path,
|
| 261 |
+
prompt=prompt,
|
| 262 |
+
negative_prompt="music",
|
| 263 |
+
seed=-1,
|
| 264 |
+
num_steps=25,
|
| 265 |
+
cfg_strength=4.5,
|
| 266 |
+
duration=8
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# ์์ ํ์ผ ์ ๋ฆฌ
|
| 270 |
+
if output_path != final_path:
|
| 271 |
+
os.remove(output_path)
|
| 272 |
+
if final_path != final_path_with_audio:
|
| 273 |
+
os.remove(final_path)
|
| 274 |
+
|
| 275 |
+
return final_path_with_audio
|
| 276 |
+
except Exception as e:
|
| 277 |
+
logger.error(f"Error in audio processing: {str(e)}")
|
| 278 |
+
return final_path # ์ค๋์ค ์ฒ๋ฆฌ ์คํจ ์ ์ํฐ๋งํฌ๋ง ๋ ๋น๋์ค ๋ฐํ
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
logger.error(f"Error processing video file: {str(e)}")
|
| 282 |
+
return "Error processing video file"
|
| 283 |
+
|
| 284 |
+
css = """
|
| 285 |
+
footer {display: none}
|
| 286 |
+
.gradio-container {max-width: 1200px !important}
|
| 287 |
+
"""
|
| 288 |
+
|
| 289 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 290 |
+
gr.HTML('<div style="text-align: center; font-size: 1.5em; margin: 10px 0;">๐ฅ Image to Video Generator</div>')
|
| 291 |
+
|
| 292 |
+
with gr.Row():
|
| 293 |
+
with gr.Column(scale=3):
|
| 294 |
+
video_prompt = gr.Textbox(
|
| 295 |
+
label="Video Description",
|
| 296 |
+
placeholder="Enter video description...",
|
| 297 |
+
lines=3
|
| 298 |
+
)
|
| 299 |
+
upload_image = gr.Image(type="filepath", label="Upload First Frame Image")
|
| 300 |
+
video_generate_btn = gr.Button("๐ฌ Generate Video")
|
| 301 |
+
|
| 302 |
+
with gr.Column(scale=4):
|
| 303 |
+
video_output = gr.Video(label="Generated Video")
|
| 304 |
|
| 305 |
+
def process_and_generate_video(image, prompt):
|
| 306 |
+
if image is None:
|
| 307 |
+
return "Please upload an image"
|
| 308 |
+
|
| 309 |
+
try:
|
| 310 |
+
img = Image.open(image)
|
| 311 |
+
if img.mode != 'RGB':
|
| 312 |
+
img = img.convert('RGB')
|
| 313 |
+
|
| 314 |
+
temp_path = f"temp_{int(time.time())}.png"
|
| 315 |
+
img.save(temp_path, 'PNG')
|
| 316 |
+
|
| 317 |
+
result = generate_video(temp_path, prompt)
|
| 318 |
+
|
| 319 |
+
try:
|
| 320 |
+
os.remove(temp_path)
|
| 321 |
+
except:
|
| 322 |
+
pass
|
| 323 |
+
|
| 324 |
+
return result
|
| 325 |
+
|
| 326 |
+
except Exception as e:
|
| 327 |
+
logger.error(f"Error processing image: {str(e)}")
|
| 328 |
+
return "Error processing image"
|
| 329 |
|
| 330 |
+
video_generate_btn.click(
|
| 331 |
+
process_and_generate_video,
|
| 332 |
+
inputs=[upload_image, video_prompt],
|
| 333 |
+
outputs=video_output
|
| 334 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
if __name__ == "__main__":
|
| 337 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|