File size: 11,846 Bytes
			
			2982a51 281711d 2dafeb1 1bcb06b 211c032 688f116 211c032 281711d 61fa714 84fdef4 2dafeb1 672339b 10e69e7 22f82e7 61fa714 15ae508 61fa714 688f116 84fdef4 3edbc93 688f116 8f9985e 2dafeb1 ba1131a 069fb2c de75bee 1bcb06b 8f9985e 10e69e7 177a597 2dafeb1 61fa714 177a597 1bcb06b 8f9985e fe04bb9 10e69e7 1bcb06b 5b5ee28 10e69e7 de9585b 211c032 de9585b 069fb2c 2dafeb1 069fb2c 2dafeb1 61fa714 de9585b 8f9985e 1bcb06b de9585b 2982a51 de9585b 211c032 688f116 211c032 688f116 211c032 688f116 211c032 5554fb7 5135eea 6c94821 2dafeb1 22f82e7 2dafeb1 22f82e7 8f9985e 22f82e7 2dafeb1 22f82e7 4965e60 22f82e7 3d4c9af 0fdb208 27f3da5 2dafeb1 3d4c9af 2dafeb1 22f82e7 21f87d6 2dafeb1 27f3da5 2dafeb1 0fdb208 27f3da5 2dafeb1 3edbc93 27f3da5 8f9985e 2dafeb1 8f9985e 2dafeb1 688f116 672339b 27f3da5 2dafeb1 8f9985e de9585b 211c032 2dafeb1 61fa714 22f82e7 3edbc93 809a553 10e69e7 22f82e7 ef27773 22f82e7 a7cc355 8f9985e 3edbc93 a7cc355 10e69e7 a7cc355 471531b 688f116 3edbc93 672339b 84fdef4 672339b 3edbc93 672339b 84fdef4 672339b 84fdef4 3edbc93 672339b 8f9985e 3edbc93 a7cc355 672339b 34f59c0 a7cc355 1de74c6 471531b a7cc355 3edbc93 61fa714 22f82e7 2dafeb1 ba1131a 15ae508 ba1131a 688f116 ba1131a 8f9985e ba1131a 281711d 688f116 27f3da5 688f116  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277  | 
								import pandas as pd
import gradio as gr
from gradio.themes.utils import sizes
from gradio_leaderboard import Leaderboard
from dotenv import load_dotenv
import contextlib
load_dotenv()  # Load environment variables from .env file
from about import ABOUT_INTRO, ABOUT_TEXT, FAQS, SUBMIT_INTRUCTIONS
from constants import (
    ASSAY_RENAME,  # noqa: F401
    SEQUENCES_FILE_DICT,
    LEADERBOARD_DISPLAY_COLUMNS,
    ABOUT_TAB_NAME,
    FAQ_TAB_NAME,
    TERMS_URL,
    LEADERBOARD_COLUMNS_RENAME,
    LEADERBOARD_COLUMNS_RENAME_LIST,
    SUBMIT_TAB_NAME,
    SLACK_URL,
)
from submit import make_submission
from utils import fetch_hf_results, show_output_box
def format_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
    """
    Format the dataframe for display on the leaderboard. The dataframe comes from utils.fetch_hf_results().
    """
    df = df_results.query("assay.isin(@ASSAY_RENAME.keys())").copy()
    if assay is not None:
        df = df[df["assay"] == assay]
    df = df[LEADERBOARD_DISPLAY_COLUMNS]
    df = df.sort_values(by="spearman", ascending=False)
    # After sorting, just add the reason for excluding heldout test set
    # Note: We can also just say the following as a text box at the bottom of the leaderboard: "Note: Results for the Heldout Test Set are only evaluated at competition close"
    # Convert spearman column to string to avoid dtype incompatibility when assigning text
    df["spearman"] = df["spearman"].astype(str)
    df.loc[
        (df["dataset"] == "Heldout Test Set") & (df["spearman"] == "nan"), "spearman"
    ] = "N/A, evaluated at competition close"
    # Finally, rename columns for readability
    df = df.rename(columns=LEADERBOARD_COLUMNS_RENAME)
    return df
def get_leaderboard_object(assay: str | None = None):
    filter_columns = ["dataset"]
    if assay is None:
        filter_columns.append("property")
    # Bug: Can't leave search_columns empty because then it says "Column None not found in headers"
    # Note(Lood): Would be nice to make it clear that the Search Column is searching on model name
    current_dataframe = pd.read_csv("debug-current-results.csv")
    lb = Leaderboard(
        value=format_leaderboard_table(df_results=current_dataframe, assay=assay),
        datatype=["str", "str", "str", "number", "str"],
        select_columns=LEADERBOARD_COLUMNS_RENAME_LIST(
            ["model", "property", "spearman", "dataset", "user"]
        ),
        search_columns=["Model Name"],
        filter_columns=LEADERBOARD_COLUMNS_RENAME_LIST(filter_columns),
        every=15,
        render=True,
    )
    return lb
# Initialize global dataframe
fetch_hf_results()
current_dataframe = pd.read_csv("debug-current-results.csv")
def refresh_overall_leaderboard():
    current_dataframe = pd.read_csv("debug-current-results.csv")
    return format_leaderboard_table(df_results=current_dataframe)
def fetch_latest_data(stop_event):
    import time
    while not stop_event.is_set():
        try:
            fetch_hf_results()
        except Exception as e:
            print(f"Error fetching latest data: {e}")
        time.sleep(3)  # Fetch every 60 seconds
    print("Exiting data fetch thread")
@contextlib.asynccontextmanager
async def periodic_data_fetch(app):
    import threading
    event = threading.Event()
    t = threading.Thread(target=fetch_latest_data, args=(event,), daemon=True)
    t.start()
    yield
    event.set()
    t.join(3)
# Make font size bigger using gradio theme
with gr.Blocks(theme=gr.themes.Default(text_size=sizes.text_lg)) as demo:
    timer = gr.Timer(3)  # Run every 3 seconds when page is focused
    ## Header
    with gr.Row():
        with gr.Column(scale=6):  # bigger text area
            gr.Markdown(
                f"""
                ## Welcome to the Ginkgo Antibody Developability Benchmark!
                Participants can submit their model to the leaderboards by simply uploading a CSV file (see the "βοΈ Submit" tab).
                You can **predict any or all of the 5 properties**, and you can filter the main leaderboard by property.
                See more details in the "{ABOUT_TAB_NAME}" tab.
                Submissions close on 1 November 2025.
                """
            )
        with gr.Column(scale=2):  # smaller side column for logo
            gr.Image(
                value="./assets/competition_logo.jpg",
                show_label=False,
                show_download_button=False,
                show_share_button=False,
                show_fullscreen_button=False,
                width="25vw",  # Take up the width of the column (2/8 = 1/4)
            )
    with gr.Tabs(elem_classes="tab-buttons"):
        with gr.TabItem(ABOUT_TAB_NAME, elem_id="abdev-benchmark-tab-table"):
            gr.Markdown(ABOUT_INTRO)
            gr.Image(
                value="./assets/prediction_explainer_cv.png",
                show_label=False,
                show_download_button=False,
                show_share_button=False,
                show_fullscreen_button=False,
                width="30vw",
            )
            gr.Markdown(ABOUT_TEXT)
            
            # Sequence download buttons
            gr.Markdown(
            """### π₯ Download Sequences
            The GDPa1 dataset (with assay data and sequences) is available on Hugging Face [here](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1), 
            but we provide this and the private test set for convenience.""")
            with gr.Row():
                with gr.Column():
                    download_button_cv_about = gr.DownloadButton(
                        label="π₯ Download GDPa1 sequences",
                        value=SEQUENCES_FILE_DICT["GDPa1_cross_validation"],
                        variant="secondary",
                    )
                with gr.Column():
                    download_button_test_about = gr.DownloadButton(
                        label="π₯ Download Private Test Set sequences",
                        value=SEQUENCES_FILE_DICT["Heldout Test Set"],
                        variant="secondary",
                    )
        with gr.TabItem(
            "π Leaderboard", elem_id="abdev-benchmark-tab-table"
        ) as leaderboard_tab:
            gr.Markdown(
                """
                # Overall Leaderboard (filter below by property)
                Each property has its own prize, and participants can submit models for any combination of properties.
                **Note**: It is *easy to overfit* the public GDPa1 dataset, which results in artificially high Spearman correlations.
                We would suggest training using cross-validation to give a better indication of the model's performance on the eventual private test set.
                """
            )
            lb = get_leaderboard_object()
            timer.tick(fn=refresh_overall_leaderboard, outputs=lb)
            demo.load(fn=refresh_overall_leaderboard, outputs=lb)
        with gr.TabItem(SUBMIT_TAB_NAME, elem_id="boundary-benchmark-tab-table"):
            gr.Markdown(SUBMIT_INTRUCTIONS)
            with gr.Row():
                with gr.Column():
                    username_input = gr.Textbox(
                        label="Username",
                        placeholder="Enter your Hugging Face username",
                        info="This will be used to identify valid submissions, and to update your results if you submit again.",
                    )
                    anonymous_checkbox = gr.Checkbox(
                        label="Anonymous",
                        value=False,
                        info="If checked, your username will be replaced with an anonymous hash on the leaderboard.",
                    )
                    model_name_input = gr.Textbox(
                        label="Model Name",
                        placeholder="Enter your model name (e.g., 'MyProteinLM-v1')",
                        info="This will be displayed on the leaderboard.",
                    )
                    model_description_input = gr.Textbox(
                        label="Model Description (optional)",
                        placeholder="Brief description of your model and approach",
                        info="Describe your model, training data, or methodology.",
                        lines=3,
                    )
                    registration_code = gr.Textbox(
                        label="Registration Code",
                        placeholder="Enter your registration code",
                        info="If you did not receive a registration code, please sign up on the <a href='https://datapoints.ginkgo.bio/ai-competitions/2025-abdev-competition'>Competition Registration page</a> or email <a href='mailto:antibodycompetition@ginkgobioworks.com'>antibodycompetition@ginkgobioworks.com</a>.",
                    )
                with gr.Column():
                    gr.Markdown("### Upload Both Submission Files")
                    # GDPa1 Cross-validation file
                    gr.Markdown("**GDPa1 Cross-Validation Predictions:**")
                    download_button_cv = gr.DownloadButton(
                        label="π₯ Download GDPa1 sequences",
                        value=SEQUENCES_FILE_DICT["GDPa1_cross_validation"],
                        variant="secondary",
                    )
                    submission_file_cv = gr.File(label="GDPa1 Cross-Validation CSV")
                    # Test set file
                    gr.Markdown("**Private Test Set Predictions:**")
                    download_button_test = gr.DownloadButton(
                        label="π₯ Download Private Test Set sequences",
                        value=SEQUENCES_FILE_DICT["Heldout Test Set"],
                        variant="secondary",
                    )
                    submission_file_test = gr.File(label="Private Test Set CSV")
            submit_btn = gr.Button("Evaluate")
            message = gr.Textbox(label="Status", lines=3, visible=False)
            submit_btn.click(
                make_submission,
                inputs=[
                    submission_file_cv,
                    submission_file_test,
                    username_input,
                    model_name_input,
                    model_description_input,
                    anonymous_checkbox,
                    registration_code,
                ],
                outputs=[message],
            ).then(
                fn=show_output_box,
                inputs=[message],
                outputs=[message],
            )
        with gr.Tab(FAQ_TAB_NAME):
            gr.Markdown("# Frequently Asked Questions")
            for i, (question, answer) in enumerate(FAQS.items()):
                # Would love to make questions bold but accordion doesn't support it
                question = f"{i+1}. {question}"
                with gr.Accordion(question, open=False):
                    gr.Markdown(f"*{answer}*")  # Italics for answers
    # Footnote
    gr.Markdown(
        f"""
        <div style="text-align: center; font-size: 14px; color: gray; margin-top: 2em;">
        π¬ For questions or feedback, contact <a href="mailto:antibodycompetition@ginkgobioworks.com">antibodycompetition@ginkgobioworks.com</a> or discuss on the <a href="{SLACK_URL}">Slack community</a> co-hosted by Bits in Bio.<br>
        Visit the <a href="https://datapoints.ginkgo.bio/ai-competitions/2025-abdev-competition">Competition Registration page</a> to sign up for updates and to register, and see Terms <a href="{TERMS_URL}">here</a>.
        </div>
        """,
        elem_id="contact-footer",
    )
if __name__ == "__main__":
    demo.launch(
        ssr_mode=False, app_kwargs={"lifespan": periodic_data_fetch}
    )
 |