loodvanniekerkginkgo's picture
Added new interim scoring message, removed extra print
a3fddce
raw
history blame
11.8 kB
import time
import pandas as pd
import gradio as gr
from gradio.themes.utils import sizes
from gradio_leaderboard import Leaderboard
from dotenv import load_dotenv
load_dotenv() # Load environment variables from .env file (before imports)
from about import ABOUT_INTRO, ABOUT_TEXT, FAQS, SUBMIT_INSTRUCTIONS, WEBSITE_HEADER
from constants import (
ASSAY_RENAME, # noqa: F401
FIRST_DEADLINE,
SEQUENCES_FILE_DICT,
LEADERBOARD_DISPLAY_COLUMNS,
ABOUT_TAB_NAME,
FAQ_TAB_NAME,
TERMS_URL,
LEADERBOARD_COLUMNS_RENAME,
LEADERBOARD_COLUMNS_RENAME_LIST,
SUBMIT_TAB_NAME,
SLACK_URL,
)
from submit import make_submission
from utils import fetch_hf_results, show_output_box, periodic_data_fetch
def format_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
"""
Format the dataframe for display on the leaderboard. The dataframe comes from utils.fetch_hf_results().
"""
df = df_results.query("assay.isin(@ASSAY_RENAME.keys())").copy()
if assay is not None:
df = df[df["assay"] == assay]
df = df[LEADERBOARD_DISPLAY_COLUMNS]
df = df.sort_values(by="spearman", ascending=False)
# After sorting, just add the reason for excluding heldout test set
# Note: We can also just say the following as a text box at the bottom of the leaderboard: "Note: Results for the Heldout Test Set are only evaluated at competition close"
# Convert spearman column to string to avoid dtype incompatibility when assigning text
df["spearman"] = df["spearman"].astype(str)
# Cast submission_time to datetime
df["submission_time"] = pd.to_datetime(df["submission_time"], errors="coerce")
# Before the first deadline: Say we're busy evaluating
df.loc[
(df["dataset"] == "Heldout Test Set")
& (df["spearman"] == "nan")
& (df["submission_time"] <= FIRST_DEADLINE),
"spearman",
] = "Busy evaluating first deadline"
# After the first deadline: Evaluated at competition close
df.loc[
(df["dataset"] == "Heldout Test Set")
& (df["spearman"] == "nan")
& (df["submission_time"] > FIRST_DEADLINE),
"spearman",
] = "N/A, evaluated at competition close"
# Finally, rename columns for readability
df = df.rename(columns=LEADERBOARD_COLUMNS_RENAME)
return df
def get_leaderboard_object(assay: str | None = None):
filter_columns = ["dataset"]
if assay is None:
filter_columns.append("property")
# Bug: Can't leave search_columns empty because then it says "Column None not found in headers"
# Note(Lood): Would be nice to make it clear that the Search Column is searching on model name
current_dataframe = pd.read_csv("debug-current-results.csv")
lb = Leaderboard(
value=format_leaderboard_table(df_results=current_dataframe, assay=assay),
datatype=["str", "str", "str", "number", "str"],
select_columns=LEADERBOARD_COLUMNS_RENAME_LIST(
["model", "property", "spearman", "dataset", "user"]
),
search_columns=["Model Name"],
filter_columns=LEADERBOARD_COLUMNS_RENAME_LIST(filter_columns),
every=15,
render=True,
height=500, # Set a fixed height to make it scrollable
)
return lb
def refresh_overall_leaderboard():
# debug-current-results.csv is updated by the outer thread
current_dataframe = pd.read_csv("debug-current-results.csv")
return format_leaderboard_table(df_results=current_dataframe)
# Initialize global dataframe
fetch_hf_results()
time.sleep(2) # Give the outer thread time to create the file at the start
current_dataframe = pd.read_csv("debug-current-results.csv")
# Make font size bigger using gradio theme
with gr.Blocks(theme=gr.themes.Default(text_size=sizes.text_lg)) as demo:
timer = gr.Timer(3) # Run every 3 seconds when page is focused
## Header
with gr.Row():
with gr.Column(scale=6): # bigger text area
gr.Markdown(WEBSITE_HEADER)
with gr.Column(scale=2): # smaller side column for logo
gr.Image(
value="./assets/competition_logo.jpg",
show_label=False,
show_download_button=False,
show_share_button=False,
show_fullscreen_button=False,
width="25vw", # Take up the width of the column (2/8 = 1/4)
)
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem(ABOUT_TAB_NAME, elem_id="abdev-benchmark-tab-table"):
gr.Markdown(ABOUT_INTRO)
gr.Image(
value="./assets/prediction_explainer_cv.png",
show_label=False,
show_download_button=False,
show_share_button=False,
show_fullscreen_button=False,
width="30vw",
)
gr.Markdown(ABOUT_TEXT)
# Sequence download buttons
gr.Markdown(
"""### ๐Ÿ“ฅ Download Sequences
The GDPa1 dataset (with assay data and sequences) is available on Hugging Face [here](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1),
but we provide this and the private test set for convenience."""
)
with gr.Row():
with gr.Column():
download_button_cv_about = gr.DownloadButton(
label="๐Ÿ“ฅ Download GDPa1 sequences",
value=SEQUENCES_FILE_DICT["GDPa1_cross_validation"],
variant="secondary",
)
with gr.Column():
download_button_test_about = gr.DownloadButton(
label="๐Ÿ“ฅ Download Private Test Set sequences",
value=SEQUENCES_FILE_DICT["Heldout Test Set"],
variant="secondary",
)
with gr.TabItem(
"๐Ÿ† Leaderboard", elem_id="abdev-benchmark-tab-table"
) as leaderboard_tab:
gr.Markdown(
"""
# Overall Leaderboard (filter below by property)
Each property has its own prize, and participants can submit models for any combination of properties.
**Note**: It is *easy to overfit* the public GDPa1 dataset, which results in artificially high Spearman correlations.
We would suggest training using cross-validation to give a better indication of the model's performance on the eventual private test set.
"""
)
lb = get_leaderboard_object()
timer.tick(fn=refresh_overall_leaderboard, outputs=lb)
demo.load(fn=refresh_overall_leaderboard, outputs=lb)
with gr.TabItem(SUBMIT_TAB_NAME, elem_id="boundary-benchmark-tab-table"):
gr.Markdown(SUBMIT_INSTRUCTIONS)
with gr.Row():
with gr.Column():
username_input = gr.Textbox(
label="Username",
placeholder="Enter your Hugging Face username",
info="This will be used to identify valid submissions, and to update your results if you submit again.",
)
anonymous_checkbox = gr.Checkbox(
label="Anonymous",
value=False,
info="If checked, your username will be replaced with an anonymous hash on the leaderboard.",
)
model_name_input = gr.Textbox(
label="Model Name",
placeholder="Enter your model name (e.g., 'MyProteinLM-v1')",
info="This will be displayed on the leaderboard.",
)
model_description_input = gr.Textbox(
label="Model Description (optional)",
placeholder="Brief description of your model and approach",
info="Describe your model, training data, or methodology.",
lines=3,
)
registration_code = gr.Textbox(
label="Registration Code",
placeholder="Enter your registration code",
info="If you did not receive a registration code, please sign up on the <a href='https://datapoints.ginkgo.bio/ai-competitions/2025-abdev-competition'>Competition Registration page</a> or email <a href='mailto:antibodycompetition@ginkgobioworks.com'>antibodycompetition@ginkgobioworks.com</a>.",
)
with gr.Column():
gr.Markdown("### Upload Both Submission Files")
# GDPa1 Cross-validation file
gr.Markdown("**GDPa1 Cross-Validation Predictions:**")
download_button_cv = gr.DownloadButton(
label="๐Ÿ“ฅ Download GDPa1 sequences",
value=SEQUENCES_FILE_DICT["GDPa1_cross_validation"],
variant="secondary",
)
submission_file_cv = gr.File(label="GDPa1 Cross-Validation CSV")
# Test set file
gr.Markdown("**Private Test Set Predictions:**")
download_button_test = gr.DownloadButton(
label="๐Ÿ“ฅ Download Private Test Set sequences",
value=SEQUENCES_FILE_DICT["Heldout Test Set"],
variant="secondary",
)
submission_file_test = gr.File(label="Private Test Set CSV")
submit_btn = gr.Button("Evaluate")
message = gr.Textbox(label="Status", lines=3, visible=False)
submit_btn.click(
make_submission,
inputs=[
submission_file_cv,
submission_file_test,
username_input,
model_name_input,
model_description_input,
anonymous_checkbox,
registration_code,
],
outputs=[message],
).then(
fn=show_output_box,
inputs=[message],
outputs=[message],
)
with gr.Tab(FAQ_TAB_NAME):
gr.Markdown("# Frequently Asked Questions")
for i, (question, answer) in enumerate(FAQS.items()):
# Would love to make questions bold but accordion doesn't support it
question = f"{i+1}. {question}"
with gr.Accordion(question, open=False):
if isinstance(answer, list):
# Italicize each line
italicized_answer = " \n".join(f"*{item}*" for item in answer)
gr.Markdown(italicized_answer)
else:
gr.Markdown(f"*{answer}*") # Italics for answers
# Footnote
gr.Markdown(
f"""
<div style="text-align: center; font-size: 14px; color: gray; margin-top: 2em;">
๐Ÿ“ฌ For questions or feedback, contact <a href="mailto:antibodycompetition@ginkgobioworks.com">antibodycompetition@ginkgobioworks.com</a> or discuss on the <a href="{SLACK_URL}">Slack community</a> co-hosted by Bits in Bio.<br>
Visit the <a href="https://datapoints.ginkgo.bio/ai-competitions/2025-abdev-competition">Competition Registration page</a> to sign up for updates and to register, and see Terms <a href="{TERMS_URL}">here</a>.
</div>
""",
elem_id="contact-footer",
)
if __name__ == "__main__":
demo.launch(ssr_mode=False, app_kwargs={"lifespan": periodic_data_fetch})