mv constants to constants.py
Browse files
about.py
CHANGED
|
@@ -1,34 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from huggingface_hub import HfApi
|
| 3 |
-
|
| 4 |
-
ASSAY_LIST = ["AC-SINS_pH7.4", "PR_CHO", "HIC", "Tm2", "Titer"]
|
| 5 |
-
ASSAY_RENAME = {
|
| 6 |
-
"AC-SINS_pH7.4": "Self-association",
|
| 7 |
-
"PR_CHO": "Polyreactivity",
|
| 8 |
-
"HIC": "Hydrophobicity",
|
| 9 |
-
"Tm2": "Thermostability",
|
| 10 |
-
"Titer": "Titer",
|
| 11 |
-
}
|
| 12 |
-
ASSAY_DESCRIPTION = {
|
| 13 |
-
"AC-SINS_pH7.4": "Self association by AC-SINS at pH 7.4",
|
| 14 |
-
"PR_CHO": "Polyreactivity by bead-based method against CHO SMP and ovalbumin",
|
| 15 |
-
"HIC": "Hydrophobicity by HIC",
|
| 16 |
-
"Tm2": "Thermostability by nanoDSF",
|
| 17 |
-
"Titer": "Titer by Valita",
|
| 18 |
-
}
|
| 19 |
-
ASSAY_EMOJIS = {
|
| 20 |
-
"AC-SINS_pH7.4": "🧲",
|
| 21 |
-
"PR_CHO": "🎯",
|
| 22 |
-
"HIC": "💧",
|
| 23 |
-
"Tm2": "🌡️",
|
| 24 |
-
"Titer": "🧪",
|
| 25 |
-
}
|
| 26 |
-
TOKEN = os.environ.get("HF_TOKEN")
|
| 27 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 28 |
-
API = HfApi(token=TOKEN)
|
| 29 |
-
organization="ginkgo-datapoints"
|
| 30 |
-
submissions_repo = f'{organization}/abdev-bench-submissions'
|
| 31 |
-
results_repo = f'{organization}/abdev-bench-results'
|
| 32 |
|
| 33 |
ABOUT_TEXT = """
|
| 34 |
## About this challenge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
ABOUT_TEXT = """
|
| 3 |
## About this challenge
|
app.py
CHANGED
|
@@ -4,7 +4,8 @@ import gradio as gr
|
|
| 4 |
from gradio_leaderboard import Leaderboard
|
| 5 |
|
| 6 |
from utils import fetch_hf_results, show_output_box
|
| 7 |
-
from
|
|
|
|
| 8 |
from submit import make_submission
|
| 9 |
|
| 10 |
def format_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
|
|
|
|
| 4 |
from gradio_leaderboard import Leaderboard
|
| 5 |
|
| 6 |
from utils import fetch_hf_results, show_output_box
|
| 7 |
+
from constants import ASSAY_LIST, ASSAY_RENAME, ASSAY_EMOJIS, ASSAY_DESCRIPTION
|
| 8 |
+
from about import ABOUT_TEXT, FAQS
|
| 9 |
from submit import make_submission
|
| 10 |
|
| 11 |
def format_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
|
constants.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Constants for the Antibody Developability Benchmark
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import HfApi
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
ASSAY_LIST = ["AC-SINS_pH7.4", "PR_CHO", "HIC", "Tm2", "Titer"]
|
| 10 |
+
ASSAY_RENAME = {
|
| 11 |
+
"AC-SINS_pH7.4": "Self-association",
|
| 12 |
+
"PR_CHO": "Polyreactivity",
|
| 13 |
+
"HIC": "Hydrophobicity",
|
| 14 |
+
"Tm2": "Thermostability",
|
| 15 |
+
"Titer": "Titer",
|
| 16 |
+
}
|
| 17 |
+
ASSAY_DESCRIPTION = {
|
| 18 |
+
"AC-SINS_pH7.4": "Self association by AC-SINS at pH 7.4",
|
| 19 |
+
"PR_CHO": "Polyreactivity by bead-based method against CHO SMP and ovalbumin",
|
| 20 |
+
"HIC": "Hydrophobicity by HIC",
|
| 21 |
+
"Tm2": "Thermostability by nanoDSF",
|
| 22 |
+
"Titer": "Titer by Valita",
|
| 23 |
+
}
|
| 24 |
+
ASSAY_EMOJIS = {
|
| 25 |
+
"AC-SINS_pH7.4": "🧲",
|
| 26 |
+
"PR_CHO": "🎯",
|
| 27 |
+
"HIC": "💧",
|
| 28 |
+
"Tm2": "🌡️",
|
| 29 |
+
"Titer": "🧪",
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Input CSV file requirements
|
| 33 |
+
MINIMAL_NUMBER_OF_ROWS: int = 50
|
| 34 |
+
REQUIRED_COLUMNS: list[str] = [
|
| 35 |
+
"antibody_id",
|
| 36 |
+
"antibody_name",
|
| 37 |
+
"vh_protein_sequence",
|
| 38 |
+
"vl_protein_sequence",
|
| 39 |
+
] + ASSAY_LIST
|
| 40 |
+
|
| 41 |
+
# Huggingface API
|
| 42 |
+
TOKEN = os.environ.get("HF_TOKEN")
|
| 43 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 44 |
+
API = HfApi(token=TOKEN)
|
| 45 |
+
|
| 46 |
+
# Huggingface repos
|
| 47 |
+
ORGANIZATION="ginkgo-datapoints"
|
| 48 |
+
SUBMISSIONS_REPO = f'{ORGANIZATION}/abdev-bench-submissions'
|
| 49 |
+
RESULTS_REPO = f'{ORGANIZATION}/abdev-bench-results'
|
utils.py
CHANGED
|
@@ -7,7 +7,7 @@ import pandas as pd
|
|
| 7 |
from datasets import load_dataset
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
-
from
|
| 11 |
|
| 12 |
# def make_user_clickable(name):
|
| 13 |
# link =f'https://huggingface.co/{name}'
|
|
@@ -21,7 +21,7 @@ def show_output_box(message):
|
|
| 21 |
return gr.update(value=message, visible=True)
|
| 22 |
|
| 23 |
def fetch_hf_results():
|
| 24 |
-
ds = load_dataset(
|
| 25 |
df = pd.DataFrame(ds).drop_duplicates(subset=["model", "assay"])
|
| 26 |
df["property"] = df["assay"].map(ASSAY_RENAME)
|
| 27 |
print(df.head())
|
|
@@ -29,7 +29,7 @@ def fetch_hf_results():
|
|
| 29 |
|
| 30 |
def read_result_from_hub(filename):
|
| 31 |
local_path = hf_hub_download(
|
| 32 |
-
repo_id=
|
| 33 |
repo_type="dataset",
|
| 34 |
filename=filename,
|
| 35 |
)
|
|
@@ -37,7 +37,7 @@ def read_result_from_hub(filename):
|
|
| 37 |
|
| 38 |
def read_submission_from_hub(filename):
|
| 39 |
local_path = hf_hub_download(
|
| 40 |
-
repo_id=
|
| 41 |
repo_type="dataset",
|
| 42 |
filename=filename,
|
| 43 |
)
|
|
@@ -65,7 +65,7 @@ def write_results(record, result):
|
|
| 65 |
API.upload_file(
|
| 66 |
path_or_fileobj=tmp_name,
|
| 67 |
path_in_repo=record['result_filename'],
|
| 68 |
-
repo_id=
|
| 69 |
repo_type="dataset",
|
| 70 |
commit_message=f"Add result data for {record['result_filename']}"
|
| 71 |
)
|
|
|
|
| 7 |
from datasets import load_dataset
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
+
from constants import API, SUBMISSIONS_REPO, RESULTS_REPO, ASSAY_RENAME
|
| 11 |
|
| 12 |
# def make_user_clickable(name):
|
| 13 |
# link =f'https://huggingface.co/{name}'
|
|
|
|
| 21 |
return gr.update(value=message, visible=True)
|
| 22 |
|
| 23 |
def fetch_hf_results():
|
| 24 |
+
ds = load_dataset(RESULTS_REPO, split='no_low_spearman', download_mode="force_redownload")
|
| 25 |
df = pd.DataFrame(ds).drop_duplicates(subset=["model", "assay"])
|
| 26 |
df["property"] = df["assay"].map(ASSAY_RENAME)
|
| 27 |
print(df.head())
|
|
|
|
| 29 |
|
| 30 |
def read_result_from_hub(filename):
|
| 31 |
local_path = hf_hub_download(
|
| 32 |
+
repo_id=RESULTS_REPO,
|
| 33 |
repo_type="dataset",
|
| 34 |
filename=filename,
|
| 35 |
)
|
|
|
|
| 37 |
|
| 38 |
def read_submission_from_hub(filename):
|
| 39 |
local_path = hf_hub_download(
|
| 40 |
+
repo_id=SUBMISSIONS_REPO,
|
| 41 |
repo_type="dataset",
|
| 42 |
filename=filename,
|
| 43 |
)
|
|
|
|
| 65 |
API.upload_file(
|
| 66 |
path_or_fileobj=tmp_name,
|
| 67 |
path_in_repo=record['result_filename'],
|
| 68 |
+
repo_id=RESULTS_REPO,
|
| 69 |
repo_type="dataset",
|
| 70 |
commit_message=f"Add result data for {record['result_filename']}"
|
| 71 |
)
|