loodvanniekerkginkgo commited on
Commit
fb66aff
·
1 Parent(s): 359ec84

Deadline extension and formatting

Browse files
Files changed (4) hide show
  1. about.py +3 -5
  2. app.py +2 -1
  3. submit.py +1 -1
  4. validation.py +4 -2
about.py CHANGED
@@ -16,7 +16,7 @@ WEBSITE_HEADER = f"""
16
  You can **predict any or all of the 5 properties**, and you can filter the main leaderboard by property.
17
  See more details in the "{ABOUT_TAB_NAME}" tab.
18
 
19
- Use these results to refine your models before the final submission deadline on **1 November 2025**.
20
  """
21
 
22
  ABOUT_INTRO = f"""
@@ -65,7 +65,7 @@ ABOUT_TEXT = f"""
65
 
66
  Check out our introductory tutorial on training an antibody developability prediction model with cross-validation [here]({TUTORIAL_URL}).
67
 
68
- ⏰ Submissions close on **1 November 2025**, and you can resubmit as often as you like until the final submission deadline. Remember that the cross-validation results are not important - the private test set results are what matter at the end.
69
 
70
  ---
71
 
@@ -204,7 +204,5 @@ The leaderboard will show the average Spearman rank correlation across the 5 fol
204
 
205
  ## Test set
206
 
207
- The **private test set submissions will not be scored automatically**, to avoid test set hacking. They will be evaluated after submissions close on November 1st to determine winners.
208
-
209
- Submissions close on **1 November 2025**.
210
  """
 
16
  You can **predict any or all of the 5 properties**, and you can filter the main leaderboard by property.
17
  See more details in the "{ABOUT_TAB_NAME}" tab.
18
 
19
+ Use these results to refine your models before the final submission deadline on **Monday 17 November 2025** AOE (anywhere on earth). *This is an extension from the original deadline of 1 November 2025.*
20
  """
21
 
22
  ABOUT_INTRO = f"""
 
65
 
66
  Check out our introductory tutorial on training an antibody developability prediction model with cross-validation [here]({TUTORIAL_URL}).
67
 
68
+ ⏰ Submissions close on **Monday 17 November 2025** AOE (anywhere on earth), and submissions will be scored on the private test set. You can update your model and resubmit as often as you like until the final submission deadline. Remember that the cross-validation results are not important - the private test set results are what matter at the end.
69
 
70
  ---
71
 
 
204
 
205
  ## Test set
206
 
207
+ The **private test set submissions will not be scored automatically**, to avoid test set hacking. There was a one-time evaluation on October 13th, and the next evaluation will be after submissions close on Monday 17 November 2025 AOE (anywhere on earth) to determine winners.
 
 
208
  """
app.py CHANGED
@@ -265,5 +265,6 @@ with gr.Blocks(theme=gr.themes.Default(text_size=sizes.text_lg)) as demo:
265
 
266
  if __name__ == "__main__":
267
  demo.launch(
268
- ssr_mode=False, app_kwargs={"lifespan": periodic_data_fetch},
 
269
  )
 
265
 
266
  if __name__ == "__main__":
267
  demo.launch(
268
+ ssr_mode=False,
269
+ app_kwargs={"lifespan": periodic_data_fetch},
270
  )
submit.py CHANGED
@@ -147,7 +147,7 @@ def make_submission(
147
  anonymous=anonymous,
148
  )
149
  messages.append(
150
- f"✅ {display_name}: Your submission has been received! Your results should appear on the leaderboard within a minute."
151
  )
152
 
153
  return "\n\n".join(messages)
 
147
  anonymous=anonymous,
148
  )
149
  messages.append(
150
+ f"✅ {display_name}: Your submission has been received! Your results should appear on the leaderboard within a minute. If they don't, please reach out to antibodycompetition@ginkgobioworks.com."
151
  )
152
 
153
  return "\n\n".join(messages)
validation.py CHANGED
@@ -195,11 +195,13 @@ def validate_dataframe(df: pd.DataFrame, submission_type: str = "GDPa1") -> None
195
  missing_count = df[col].isnull().sum()
196
  if missing_count > 0:
197
  raise gr.Error(f"❌ Column '{col}' contains {missing_count} missing values")
198
-
199
  # No constant values in assay columns
200
  for col in assay_columns:
201
  if df[col].nunique() == 1:
202
- raise gr.Error(f"❌ Column '{col}' contains a constant value ({df[col].iloc[0]}), and therefore the Spearman correlation is undefined.")
 
 
203
 
204
  # All names should be unique
205
  n_duplicates = df["antibody_name"].duplicated().sum()
 
195
  missing_count = df[col].isnull().sum()
196
  if missing_count > 0:
197
  raise gr.Error(f"❌ Column '{col}' contains {missing_count} missing values")
198
+
199
  # No constant values in assay columns
200
  for col in assay_columns:
201
  if df[col].nunique() == 1:
202
+ raise gr.Error(
203
+ f"❌ Column '{col}' contains a constant value ({df[col].iloc[0]}), and therefore the Spearman correlation is undefined."
204
+ )
205
 
206
  # All names should be unique
207
  n_duplicates = df["antibody_name"].duplicated().sum()