Spaces:
Paused
Paused
| from flask import Flask,request,render_template,send_file,jsonify | |
| import os | |
| # from transformers import AutoTokenizer, AutoModel | |
| import anvil.server | |
| import pathlib | |
| import textwrap | |
| import import_ipynb | |
| from library import call_gpt, call_gemini, compress_bool_list, uncompress_bool_list | |
| from background_service import BackgroundTaskService | |
| import numpy as np | |
| from keys_min import server_uplink | |
| print(server_uplink) | |
| anvil.server.connect(server_uplink) | |
| # from sentence_transformers import SentenceTransformer | |
| # from sentence_transformers.util import cos_sim | |
| # model = SentenceTransformer('thenlper/gte-large') | |
| # model = SentenceTransformer('BAAI/bge-large-en') | |
| # @anvil.server.callable | |
| # def encode(sentence = None): | |
| # vec = model.encode(sentence) | |
| # return [float(val) if isinstance(val, (int, float, np.float32)) else 0.0 for val in vec] | |
| app=Flask(__name__) | |
| MESSAGED={'title':'API Server for ICAPP', | |
| 'messageL':['published server functions:','encode_anvil(text)', 'encode(sentence)', | |
| 'call_gemini(text,key)','call_gpt(text,key,model)', | |
| 'task_id<=launch(func_name,*args)','poll(task_id)']} | |
| # tokenizer = AutoTokenizer.from_pretrained('allenai/specter') | |
| # encoder = AutoModel.from_pretrained('allenai/specter') | |
| anvil.server.callable(call_gpt) | |
| anvil.server.callable(call_gemini) | |
| anvil.server.callable(compress_bool_list) | |
| anvil.server.callable(uncompress_bool_list) | |
| service=BackgroundTaskService(max_tasks=10) | |
| service.register(call_gpt) | |
| service.register(call_gemini) | |
| def launch(func_name,*args): | |
| global service | |
| # Launch task | |
| task_id = service.launch_task(func_name, *args) | |
| print(f"Task launched with ID: {task_id}") | |
| return task_id | |
| def poll(task_id): | |
| global service | |
| # Poll for completion; if not complete return "In Progress" else return result | |
| result = service.get_result(task_id) | |
| if result=='No such task': return str(result) | |
| elif result!='In Progress': | |
| del service.results[task_id] | |
| if isinstance(result, (int, float, str, list, dict, tuple)): | |
| return result | |
| else: | |
| print(str(result)) | |
| return str(result) | |
| else: return str(result) | |
| # @anvil.server.callable | |
| # def encode_anvil(text): | |
| # inputs = tokenizer(text, padding=True, truncation=True, | |
| # return_tensors="pt", max_length=512) | |
| # result = encoder(**inputs) | |
| # embeddings = result.last_hidden_state[:, 0, :] | |
| # emb_array = embeddings.detach().numpy() | |
| # embedding=emb_array.tolist() | |
| # return embedding | |
| def reset_service(): | |
| global call_gpt, call_gemini, service | |
| service=BackgroundTaskService(max_tasks=10) | |
| service.register(call_gpt) | |
| service.register(call_gemini) | |
| def print_results_table(): | |
| global service | |
| return(service.results) | |
| # @app.route('/encode',methods=['GET','POST']) | |
| # def encode(): | |
| # print(request) | |
| # if request.method=='GET': | |
| # text=request.args.get('text') | |
| # elif request.method=='POST': | |
| # data=request.get_json() | |
| # if 'text' in data: text=data["text"] | |
| # if text=='' or text is None: return -1 | |
| # inputs = tokenizer(text, padding=True, truncation=True, | |
| # return_tensors="pt", max_length=512) | |
| # result = encoder(**inputs) | |
| # embeddings = result.last_hidden_state[:, 0, :] | |
| # emb_array = embeddings.detach().numpy() | |
| # embedding=emb_array.tolist() | |
| # return jsonify({'embedding': embedding}) | |
| def home(): | |
| return render_template('home.html',messageD=MESSAGED) | |
| if __name__=='__main__': | |
| app.run(host="0.0.0.0", port=7860) | |