Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import sys | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| # Download required models | |
| t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir="models/text_encoders/") | |
| vae_path = hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae") | |
| unet_path = hf_hub_download(repo_id="lodestones/Chroma", filename="chroma-unlocked-v31.safetensors", local_dir="models/unet") | |
| # Import the workflow functions | |
| from my_workflow import ( | |
| get_value_at_index, | |
| add_comfyui_directory_to_sys_path, | |
| add_extra_model_paths, | |
| import_custom_nodes, | |
| NODE_CLASS_MAPPINGS, | |
| CLIPTextEncode, | |
| CLIPLoader, | |
| VAEDecode, | |
| UNETLoader, | |
| VAELoader, | |
| SaveImage, | |
| ) | |
| # Initialize ComfyUI | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| import_custom_nodes() | |
| def generate_image(prompt, negative_prompt, width, height, steps, cfg, seed): | |
| with torch.inference_mode(): | |
| # Set random seed if provided | |
| if seed == -1: | |
| seed = random.randint(1, 2**64) | |
| random.seed(seed) | |
| randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| randomnoise_68 = randomnoise.get_noise(noise_seed=seed) | |
| emptysd3latentimage = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() | |
| emptysd3latentimage_69 = emptysd3latentimage.generate( | |
| width=width, height=height, batch_size=1 | |
| ) | |
| ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| ksamplerselect_72 = ksamplerselect.get_sampler(sampler_name="euler") | |
| cliploader = CLIPLoader() | |
| cliploader_78 = cliploader.load_clip( | |
| clip_name="t5xxl_fp8_e4m3fn.safetensors", type="chroma", device="default" | |
| ) | |
| t5tokenizeroptions = NODE_CLASS_MAPPINGS["T5TokenizerOptions"]() | |
| t5tokenizeroptions_82 = t5tokenizeroptions.set_options( | |
| min_padding=1, min_length=0, clip=get_value_at_index(cliploader_78, 0) | |
| ) | |
| cliptextencode = CLIPTextEncode() | |
| cliptextencode_74 = cliptextencode.encode( | |
| text=prompt, | |
| clip=get_value_at_index(t5tokenizeroptions_82, 0), | |
| ) | |
| cliptextencode_75 = cliptextencode.encode( | |
| text=negative_prompt, | |
| clip=get_value_at_index(t5tokenizeroptions_82, 0), | |
| ) | |
| unetloader = UNETLoader() | |
| unetloader_76 = unetloader.load_unet( | |
| unet_name="chroma-unlocked-v31.safetensors", weight_dtype="fp8_e4m3fn" | |
| ) | |
| vaeloader = VAELoader() | |
| vaeloader_80 = vaeloader.load_vae(vae_name="ae.safetensors") | |
| cfgguider = NODE_CLASS_MAPPINGS["CFGGuider"]() | |
| basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| vaedecode = VAEDecode() | |
| saveimage = SaveImage() | |
| cfgguider_73 = cfgguider.get_guider( | |
| cfg=cfg, | |
| model=get_value_at_index(unetloader_76, 0), | |
| positive=get_value_at_index(cliptextencode_74, 0), | |
| negative=get_value_at_index(cliptextencode_75, 0), | |
| ) | |
| basicscheduler_84 = basicscheduler.get_sigmas( | |
| scheduler="beta", | |
| steps=steps, | |
| denoise=1, | |
| model=get_value_at_index(unetloader_76, 0), | |
| ) | |
| samplercustomadvanced_67 = samplercustomadvanced.sample( | |
| noise=get_value_at_index(randomnoise_68, 0), | |
| guider=get_value_at_index(cfgguider_73, 0), | |
| sampler=get_value_at_index(ksamplerselect_72, 0), | |
| sigmas=get_value_at_index(basicscheduler_84, 0), | |
| latent_image=get_value_at_index(emptysd3latentimage_69, 0), | |
| ) | |
| vaedecode_79 = vaedecode.decode( | |
| samples=get_value_at_index(samplercustomadvanced_67, 0), | |
| vae=get_value_at_index(vaeloader_80, 0), | |
| ) | |
| # Instead of saving to file, return the image directly | |
| return get_value_at_index(vaedecode_79, 0) | |
| # Create Gradio interface | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Chroma Image Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here...", | |
| lines=3 | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="Enter negative prompt here...", | |
| value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", | |
| lines=2 | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| minimum=512, | |
| maximum=2048, | |
| value=1024, | |
| step=64, | |
| label="Width" | |
| ) | |
| height = gr.Slider( | |
| minimum=512, | |
| maximum=2048, | |
| value=1024, | |
| step=64, | |
| label="Height" | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| minimum=1, | |
| maximum=50, | |
| value=26, | |
| step=1, | |
| label="Steps" | |
| ) | |
| cfg = gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| value=4, | |
| step=0.5, | |
| label="CFG Scale" | |
| ) | |
| seed = gr.Number( | |
| value=-1, | |
| label="Seed (-1 for random)" | |
| ) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt, negative_prompt, width, height, steps, cfg, seed], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch(share=True) | |