Spaces:
Running
on
Zero
Running
on
Zero
| # pytorch_diffusion + derived encoder decoder | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| import logging | |
| from comfy import model_management | |
| import comfy.ops | |
| ops = comfy.ops.disable_weight_init | |
| if model_management.xformers_enabled_vae(): | |
| import xformers | |
| import xformers.ops | |
| def get_timestep_embedding(timesteps, embedding_dim): | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: | |
| From Fairseq. | |
| Build sinusoidal embeddings. | |
| This matches the implementation in tensor2tensor, but differs slightly | |
| from the description in Section 3.5 of "Attention Is All You Need". | |
| """ | |
| assert len(timesteps.shape) == 1 | |
| half_dim = embedding_dim // 2 | |
| emb = math.log(10000) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
| emb = emb.to(device=timesteps.device) | |
| emb = timesteps.float()[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0,1,0,0)) | |
| return emb | |
| def nonlinearity(x): | |
| # swish | |
| return x*torch.sigmoid(x) | |
| def Normalize(in_channels, num_groups=32): | |
| return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| class VideoConv3d(nn.Module): | |
| def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs): | |
| super().__init__() | |
| self.padding_mode = padding_mode | |
| if padding != 0: | |
| padding = (padding, padding, padding, padding, kernel_size - 1, 0) | |
| else: | |
| kwargs["padding"] = padding | |
| self.padding = padding | |
| self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) | |
| def forward(self, x): | |
| if self.padding != 0: | |
| x = torch.nn.functional.pad(x, self.padding, mode=self.padding_mode) | |
| return self.conv(x) | |
| def interpolate_up(x, scale_factor): | |
| try: | |
| return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest") | |
| except: #operation not implemented for bf16 | |
| orig_shape = list(x.shape) | |
| out_shape = orig_shape[:2] | |
| for i in range(len(orig_shape) - 2): | |
| out_shape.append(round(orig_shape[i + 2] * scale_factor[i])) | |
| out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device) | |
| split = 8 | |
| l = out.shape[1] // split | |
| for i in range(0, out.shape[1], l): | |
| out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype) | |
| return out | |
| class Upsample(nn.Module): | |
| def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| self.scale_factor = scale_factor | |
| if self.with_conv: | |
| self.conv = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| scale_factor = self.scale_factor | |
| if isinstance(scale_factor, (int, float)): | |
| scale_factor = (scale_factor,) * (x.ndim - 2) | |
| if x.ndim == 5 and scale_factor[0] > 1.0: | |
| t = x.shape[2] | |
| if t > 1: | |
| a, b = x.split((1, t - 1), dim=2) | |
| del x | |
| b = interpolate_up(b, scale_factor) | |
| else: | |
| a = x | |
| a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2) | |
| if t > 1: | |
| x = torch.cat((a, b), dim=2) | |
| else: | |
| x = a | |
| else: | |
| x = interpolate_up(x, scale_factor) | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| def __init__(self, in_channels, with_conv, stride=2, conv_op=ops.Conv2d): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=0) | |
| def forward(self, x): | |
| if self.with_conv: | |
| if x.ndim == 4: | |
| pad = (0, 1, 0, 1) | |
| mode = "constant" | |
| x = torch.nn.functional.pad(x, pad, mode=mode, value=0) | |
| elif x.ndim == 5: | |
| pad = (1, 1, 1, 1, 2, 0) | |
| mode = "replicate" | |
| x = torch.nn.functional.pad(x, pad, mode=mode) | |
| x = self.conv(x) | |
| else: | |
| x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
| return x | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
| dropout, temb_channels=512, conv_op=ops.Conv2d): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.swish = torch.nn.SiLU(inplace=True) | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = conv_op(in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| if temb_channels > 0: | |
| self.temb_proj = ops.Linear(temb_channels, | |
| out_channels) | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout, inplace=True) | |
| self.conv2 = conv_op(out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = conv_op(in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| else: | |
| self.nin_shortcut = conv_op(in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = self.swish(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(self.swish(temb))[:,:,None,None] | |
| h = self.norm2(h) | |
| h = self.swish(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x+h | |
| def slice_attention(q, k, v): | |
| r1 = torch.zeros_like(k, device=q.device) | |
| scale = (int(q.shape[-1])**(-0.5)) | |
| mem_free_total = model_management.get_free_memory(q.device) | |
| tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
| modifier = 3 if q.element_size() == 2 else 2.5 | |
| mem_required = tensor_size * modifier | |
| steps = 1 | |
| if mem_required > mem_free_total: | |
| steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
| while True: | |
| try: | |
| slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
| for i in range(0, q.shape[1], slice_size): | |
| end = i + slice_size | |
| s1 = torch.bmm(q[:, i:end], k) * scale | |
| s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) | |
| del s1 | |
| r1[:, :, i:end] = torch.bmm(v, s2) | |
| del s2 | |
| break | |
| except model_management.OOM_EXCEPTION as e: | |
| model_management.soft_empty_cache(True) | |
| steps *= 2 | |
| if steps > 128: | |
| raise e | |
| logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) | |
| return r1 | |
| def normal_attention(q, k, v): | |
| # compute attention | |
| orig_shape = q.shape | |
| b = orig_shape[0] | |
| c = orig_shape[1] | |
| q = q.reshape(b, c, -1) | |
| q = q.permute(0, 2, 1) # b,hw,c | |
| k = k.reshape(b, c, -1) # b,c,hw | |
| v = v.reshape(b, c, -1) | |
| r1 = slice_attention(q, k, v) | |
| h_ = r1.reshape(orig_shape) | |
| del r1 | |
| return h_ | |
| def xformers_attention(q, k, v): | |
| # compute attention | |
| orig_shape = q.shape | |
| B = orig_shape[0] | |
| C = orig_shape[1] | |
| q, k, v = map( | |
| lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), | |
| (q, k, v), | |
| ) | |
| try: | |
| out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) | |
| out = out.transpose(1, 2).reshape(orig_shape) | |
| except NotImplementedError: | |
| out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) | |
| return out | |
| def pytorch_attention(q, k, v): | |
| # compute attention | |
| orig_shape = q.shape | |
| B = orig_shape[0] | |
| C = orig_shape[1] | |
| q, k, v = map( | |
| lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), | |
| (q, k, v), | |
| ) | |
| try: | |
| out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) | |
| out = out.transpose(2, 3).reshape(orig_shape) | |
| except model_management.OOM_EXCEPTION: | |
| logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") | |
| out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) | |
| return out | |
| def vae_attention(): | |
| if model_management.xformers_enabled_vae(): | |
| logging.info("Using xformers attention in VAE") | |
| return xformers_attention | |
| elif model_management.pytorch_attention_enabled_vae(): | |
| logging.info("Using pytorch attention in VAE") | |
| return pytorch_attention | |
| else: | |
| logging.info("Using split attention in VAE") | |
| return normal_attention | |
| class AttnBlock(nn.Module): | |
| def __init__(self, in_channels, conv_op=ops.Conv2d): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.k = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.v = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.proj_out = conv_op(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.optimized_attention = vae_attention() | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| h_ = self.optimized_attention(q, k, v) | |
| h_ = self.proj_out(h_) | |
| return x+h_ | |
| def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None, conv_op=ops.Conv2d): | |
| return AttnBlock(in_channels, conv_op=conv_op) | |
| class Model(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): | |
| super().__init__() | |
| if use_linear_attn: attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = self.ch*4 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.use_timestep = use_timestep | |
| if self.use_timestep: | |
| # timestep embedding | |
| self.temb = nn.Module() | |
| self.temb.dense = nn.ModuleList([ | |
| ops.Linear(self.ch, | |
| self.temb_ch), | |
| ops.Linear(self.temb_ch, | |
| self.temb_ch), | |
| ]) | |
| # downsampling | |
| self.conv_in = ops.Conv2d(in_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| skip_in = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| if i_block == self.num_res_blocks: | |
| skip_in = ch*in_ch_mult[i_level] | |
| block.append(ResnetBlock(in_channels=block_in+skip_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = ops.Conv2d(block_in, | |
| out_ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x, t=None, context=None): | |
| #assert x.shape[2] == x.shape[3] == self.resolution | |
| if context is not None: | |
| # assume aligned context, cat along channel axis | |
| x = torch.cat((x, context), dim=1) | |
| if self.use_timestep: | |
| # timestep embedding | |
| assert t is not None | |
| temb = get_timestep_embedding(t, self.ch) | |
| temb = self.temb.dense[0](temb) | |
| temb = nonlinearity(temb) | |
| temb = self.temb.dense[1](temb) | |
| else: | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions-1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block]( | |
| torch.cat([h, hs.pop()], dim=1), temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| def get_last_layer(self): | |
| return self.conv_out.weight | |
| class Encoder(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", | |
| conv3d=False, time_compress=None, | |
| **ignore_kwargs): | |
| super().__init__() | |
| if use_linear_attn: attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| if conv3d: | |
| conv_op = VideoConv3d | |
| mid_attn_conv_op = ops.Conv3d | |
| else: | |
| conv_op = ops.Conv2d | |
| mid_attn_conv_op = ops.Conv2d | |
| # downsampling | |
| self.conv_in = conv_op(in_channels, | |
| self.ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| curr_res = resolution | |
| in_ch_mult = (1,)+tuple(ch_mult) | |
| self.in_ch_mult = in_ch_mult | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch*in_ch_mult[i_level] | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append(ResnetBlock(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type, conv_op=conv_op)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions-1: | |
| stride = 2 | |
| if time_compress is not None: | |
| if (self.num_resolutions - 1 - i_level) > math.log2(time_compress): | |
| stride = (1, 2, 2) | |
| down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, conv_op=mid_attn_conv_op) | |
| self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op) | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = conv_op(block_in, | |
| 2*z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, x): | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| h = self.conv_in(x) | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](h, temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| if i_level != self.num_resolutions-1: | |
| h = self.down[i_level].downsample(h) | |
| # middle | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Decoder(nn.Module): | |
| def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
| attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
| resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, | |
| conv_out_op=ops.Conv2d, | |
| resnet_op=ResnetBlock, | |
| attn_op=AttnBlock, | |
| conv3d=False, | |
| time_compress=None, | |
| **ignorekwargs): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| self.tanh_out = tanh_out | |
| if conv3d: | |
| conv_op = VideoConv3d | |
| conv_out_op = VideoConv3d | |
| mid_attn_conv_op = ops.Conv3d | |
| else: | |
| conv_op = ops.Conv2d | |
| mid_attn_conv_op = ops.Conv2d | |
| # compute block_in and curr_res at lowest res | |
| block_in = ch*ch_mult[self.num_resolutions-1] | |
| curr_res = resolution // 2**(self.num_resolutions-1) | |
| self.z_shape = (1,z_channels,curr_res,curr_res) | |
| logging.debug("Working with z of shape {} = {} dimensions.".format( | |
| self.z_shape, np.prod(self.z_shape))) | |
| # z to block_in | |
| self.conv_in = conv_op(z_channels, | |
| block_in, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = resnet_op(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op) | |
| self.mid.attn_1 = attn_op(block_in, conv_op=mid_attn_conv_op) | |
| self.mid.block_2 = resnet_op(in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch*ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks+1): | |
| block.append(resnet_op(in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| conv_op=conv_op)) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(attn_op(block_in, conv_op=conv_op)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| scale_factor = 2.0 | |
| if time_compress is not None: | |
| if i_level > math.log2(time_compress): | |
| scale_factor = (1.0, 2.0, 2.0) | |
| up.upsample = Upsample(block_in, resamp_with_conv, conv_op=conv_op, scale_factor=scale_factor) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = conv_out_op(block_in, | |
| out_ch, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| def forward(self, z, **kwargs): | |
| # timestep embedding | |
| temb = None | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb, **kwargs) | |
| h = self.mid.attn_1(h, **kwargs) | |
| h = self.mid.block_2(h, temb, **kwargs) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks+1): | |
| h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h, **kwargs) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| if self.give_pre_end: | |
| return h | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h, **kwargs) | |
| if self.tanh_out: | |
| h = torch.tanh(h) | |
| return h | |