Spaces:
Running
on
L40S
Running
on
L40S
Commit
·
2a04008
1
Parent(s):
ff97c38
Adding generation with GPT-2 as a mock model
Browse files- app.py +80 -6
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,23 +1,94 @@
|
|
| 1 |
from collections.abc import Sequence
|
| 2 |
import random
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# If the watewrmark is not detected, consider the use case. Could be because of
|
| 7 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 8 |
# be another
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
_PROMPTS: tuple[str] = (
|
| 13 |
'prompt 1',
|
| 14 |
'prompt 2',
|
| 15 |
'prompt 3',
|
| 16 |
-
'prompt 4',
|
| 17 |
)
|
| 18 |
|
| 19 |
_CORRECT_ANSWERS: dict[str, bool] = {}
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
with gr.Blocks() as demo:
|
| 22 |
prompt_inputs = [
|
| 23 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
|
@@ -43,14 +114,17 @@ with gr.Blocks() as demo:
|
|
| 43 |
detect_btn = gr.Button('Detect', visible=False)
|
| 44 |
|
| 45 |
def generate(*prompts):
|
| 46 |
-
standard =
|
| 47 |
-
watermarked =
|
|
|
|
|
|
|
|
|
|
| 48 |
responses = standard + watermarked
|
| 49 |
random.shuffle(responses)
|
| 50 |
|
| 51 |
_CORRECT_ANSWERS.update({
|
| 52 |
-
|
| 53 |
-
|
| 54 |
})
|
| 55 |
|
| 56 |
# Load model
|
|
|
|
| 1 |
from collections.abc import Sequence
|
| 2 |
import random
|
| 3 |
+
from typing import Optional
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
import torch
|
| 8 |
+
import transformers
|
| 9 |
|
| 10 |
# If the watewrmark is not detected, consider the use case. Could be because of
|
| 11 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 12 |
# be another
|
| 13 |
|
| 14 |
+
_MODEL_IDENTIFIER = 'hf-internal-testing/tiny-random-gpt2'
|
| 15 |
|
| 16 |
_PROMPTS: tuple[str] = (
|
| 17 |
'prompt 1',
|
| 18 |
'prompt 2',
|
| 19 |
'prompt 3',
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
_CORRECT_ANSWERS: dict[str, bool] = {}
|
| 23 |
|
| 24 |
+
_TORCH_DEVICE = (
|
| 25 |
+
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
|
| 29 |
+
ngram_len=5,
|
| 30 |
+
keys=[
|
| 31 |
+
654,
|
| 32 |
+
400,
|
| 33 |
+
836,
|
| 34 |
+
123,
|
| 35 |
+
340,
|
| 36 |
+
443,
|
| 37 |
+
597,
|
| 38 |
+
160,
|
| 39 |
+
57,
|
| 40 |
+
29,
|
| 41 |
+
590,
|
| 42 |
+
639,
|
| 43 |
+
13,
|
| 44 |
+
715,
|
| 45 |
+
468,
|
| 46 |
+
990,
|
| 47 |
+
966,
|
| 48 |
+
226,
|
| 49 |
+
324,
|
| 50 |
+
585,
|
| 51 |
+
118,
|
| 52 |
+
504,
|
| 53 |
+
421,
|
| 54 |
+
521,
|
| 55 |
+
129,
|
| 56 |
+
669,
|
| 57 |
+
732,
|
| 58 |
+
225,
|
| 59 |
+
90,
|
| 60 |
+
960,
|
| 61 |
+
],
|
| 62 |
+
sampling_table_size=2**16,
|
| 63 |
+
sampling_table_seed=0,
|
| 64 |
+
context_history_size=1024,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
|
| 69 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 70 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
|
| 71 |
+
model.to(_TORCH_DEVICE)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@spaces.GPU
|
| 75 |
+
def generate_outputs(
|
| 76 |
+
prompts: Sequence[str],
|
| 77 |
+
watermarking_config: Optional[
|
| 78 |
+
transformers.generation.SynthIDTextWatermarkingConfig
|
| 79 |
+
] = None,
|
| 80 |
+
) -> Sequence[str]:
|
| 81 |
+
tokenized_prompts = tokenizer(prompts, return_tensors='pt').to(_TORCH_DEVICE)
|
| 82 |
+
output_sequences = model.generate(
|
| 83 |
+
**tokenized_prompts,
|
| 84 |
+
watermarking_config=watermarking_config,
|
| 85 |
+
do_sample=True,
|
| 86 |
+
max_length=500,
|
| 87 |
+
top_k=40,
|
| 88 |
+
)
|
| 89 |
+
return tokenizer.batch_decode(output_sequences)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
with gr.Blocks() as demo:
|
| 93 |
prompt_inputs = [
|
| 94 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
|
|
|
| 114 |
detect_btn = gr.Button('Detect', visible=False)
|
| 115 |
|
| 116 |
def generate(*prompts):
|
| 117 |
+
standard = generate_outputs(prompts=prompts)
|
| 118 |
+
watermarked = generate_outputs(
|
| 119 |
+
prompts=prompts,
|
| 120 |
+
watermarking_config=_WATERMARK_CONFIG,
|
| 121 |
+
)
|
| 122 |
responses = standard + watermarked
|
| 123 |
random.shuffle(responses)
|
| 124 |
|
| 125 |
_CORRECT_ANSWERS.update({
|
| 126 |
+
response: response in watermarked
|
| 127 |
+
for response in responses
|
| 128 |
})
|
| 129 |
|
| 130 |
# Load model
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
gradio
|
| 2 |
spaces
|
| 3 |
transformers @ git+https://github.com/sumedhghaisas2/transformers_private@synthid_text
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
spaces
|
| 3 |
transformers @ git+https://github.com/sumedhghaisas2/transformers_private@synthid_text
|
| 4 |
+
|
| 5 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 6 |
+
torch
|