Spaces:
Runtime error
Runtime error
run on cpu
Browse files
app.py
CHANGED
|
@@ -1,63 +1,33 @@
|
|
| 1 |
"""This space is taken and modified from https://huggingface.co/spaces/merve/compare_clip_siglip"""
|
| 2 |
-
import
|
| 3 |
-
from transformers import (
|
| 4 |
-
AutoModel,
|
| 5 |
-
AutoProcessor
|
| 6 |
-
)
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
################################################################################
|
| 10 |
# Load the models
|
| 11 |
################################################################################
|
| 12 |
sg1_ckpt = "google/siglip-so400m-patch14-384"
|
| 13 |
-
|
| 14 |
-
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt)
|
| 15 |
|
| 16 |
sg2_ckpt = "google/siglip2-so400m-patch14-384"
|
| 17 |
-
|
| 18 |
-
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt)
|
| 19 |
|
| 20 |
################################################################################
|
| 21 |
-
#
|
| 22 |
################################################################################
|
| 23 |
-
def postprocess(output):
|
| 24 |
-
return {out["label"]: float(out["score"]) for out in output}
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def postprocess_siglip(sg1_probs, sg2_probs, labels):
|
| 28 |
-
sg1_output = {labels[i]: float(sg1_probs[0].cpu().numpy()[i]) for i in range(len(labels))}
|
| 29 |
-
sg2_output = {labels[i]: float(sg2_probs[0].cpu().numpy()[i]) for i in range(len(labels))}
|
| 30 |
-
return sg1_output, sg2_output
|
| 31 |
-
|
| 32 |
-
def siglip_detector(image, texts):
|
| 33 |
-
sg1_inputs = siglip1_processor(
|
| 34 |
-
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
|
| 35 |
-
).to(siglip1_model.device)
|
| 36 |
-
|
| 37 |
-
sg2_inputs = siglip2_processor(
|
| 38 |
-
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
|
| 39 |
-
).to(siglip2_model.device)
|
| 40 |
-
|
| 41 |
-
with torch.no_grad():
|
| 42 |
-
sg1_outputs = siglip1_model(**sg1_inputs)
|
| 43 |
-
sg2_outputs = siglip2_model(**sg2_inputs)
|
| 44 |
-
|
| 45 |
-
sg1_logits_per_image = sg1_outputs.logits_per_image
|
| 46 |
-
sg2_logits_per_image = sg2_outputs.logits_per_image
|
| 47 |
-
|
| 48 |
-
sg1_probs = torch.sigmoid(sg1_logits_per_image)
|
| 49 |
-
sg2_probs = torch.sigmoid(sg2_logits_per_image)
|
| 50 |
-
return sg1_probs, sg2_probs
|
| 51 |
-
|
| 52 |
-
|
| 53 |
def infer(image, candidate_labels):
|
| 54 |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
| 55 |
-
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
|
| 56 |
-
return postprocess_siglip(
|
| 57 |
-
sg1_probs, sg2_probs, labels=candidate_labels
|
| 58 |
-
)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Blocks() as demo:
|
| 62 |
gr.Markdown("# Compare SigLIP 1 and SigLIP 2")
|
| 63 |
gr.Markdown(
|
|
|
|
| 1 |
"""This space is taken and modified from https://huggingface.co/spaces/merve/compare_clip_siglip"""
|
| 2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
################################################################################
|
| 6 |
# Load the models
|
| 7 |
################################################################################
|
| 8 |
sg1_ckpt = "google/siglip-so400m-patch14-384"
|
| 9 |
+
sg1_pipe = pipeline(task="zero-shot-image-classification", model=sg1_ckpt, device="cpu")
|
|
|
|
| 10 |
|
| 11 |
sg2_ckpt = "google/siglip2-so400m-patch14-384"
|
| 12 |
+
sg2_pipe = pipeline(task="zero-shot-image-classification", model=sg2_ckpt, device="cpu")
|
|
|
|
| 13 |
|
| 14 |
################################################################################
|
| 15 |
+
# Run inference
|
| 16 |
################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def infer(image, candidate_labels):
|
| 18 |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
sg1_socres = sg1_pipe(image, candidate_labels=candidate_labels)
|
| 21 |
+
sg2_socres = sg2_pipe(image, candidate_labels=candidate_labels)
|
| 22 |
+
|
| 23 |
+
sg1_outputs = {element["label"]:element["score"] for element in sg1_socres}
|
| 24 |
+
sg2_outputs = {element["label"]:element["score"] for element in sg2_socres}
|
| 25 |
|
| 26 |
+
return sg1_outputs, sg2_outputs
|
| 27 |
+
|
| 28 |
+
################################################################################
|
| 29 |
+
# Gradio App
|
| 30 |
+
################################################################################
|
| 31 |
with gr.Blocks() as demo:
|
| 32 |
gr.Markdown("# Compare SigLIP 1 and SigLIP 2")
|
| 33 |
gr.Markdown(
|