freddyaboulton HF Staff commited on
Commit
1c4b31d
·
verified ·
1 Parent(s): 10777b6

Commit 2: Add 50 file(s)

Browse files
demos/image_editor_events/run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "\n", "def verify_clear(im):\n", " print(im)\n", " return int(not np.any(im[\"composite\"])), im[\"composite\"]\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " cleared_properly = gr.Number(label=\"cleared properly\")\n", " clear_btn = gr.Button(\"Clear Button\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " ).then(verify_clear, inputs=im, outputs=[cleared_properly, im])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "\n", "def verify_clear(im):\n", " print(im)\n", " return int(not np.any(im[\"composite\"])), im[\"composite\"]\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " cleared_properly = gr.Number(label=\"cleared properly\")\n", " clear_btn = gr.Button(\"Clear Button\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " ).then(verify_clear, inputs=im, outputs=[cleared_properly, im])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/image_editor_events/run.py CHANGED
@@ -16,7 +16,6 @@ with gr.Blocks() as demo:
16
  with gr.Row():
17
  im = gr.ImageEditor(
18
  type="numpy",
19
- crop_size="1:1",
20
  elem_id="image_editor",
21
  )
22
  im_preview = gr.Image()
 
16
  with gr.Row():
17
  im = gr.ImageEditor(
18
  type="numpy",
 
19
  elem_id="image_editor",
20
  )
21
  im_preview = gr.Image()
demos/matrix_transpose/run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def transpose(matrix):\n", " return matrix.T\n", "\n", "demo = gr.Interface(\n", " transpose,\n", " gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3, show_fullscreen_button=True),\n", " \"numpy\",\n", " examples=[\n", " [np.zeros((30, 30)).tolist()],\n", " [np.ones((2, 2)).tolist()],\n", " [np.random.randint(0, 10, (3, 10)).tolist()],\n", " [np.random.randint(0, 10, (10, 3)).tolist()],\n", " [np.random.randint(0, 10, (10, 10)).tolist()],\n", " ],\n", " cache_examples=False\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def transpose(matrix):\n", " return matrix.T\n", "\n", "demo = gr.Interface(\n", " transpose,\n", " gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3, buttons=[\"fullscreen\"]),\n", " \"numpy\",\n", " examples=[\n", " [np.zeros((30, 30)).tolist()],\n", " [np.ones((2, 2)).tolist()],\n", " [np.random.randint(0, 10, (3, 10)).tolist()],\n", " [np.random.randint(0, 10, (10, 3)).tolist()],\n", " [np.random.randint(0, 10, (10, 10)).tolist()],\n", " ],\n", " cache_examples=False\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/matrix_transpose/run.py CHANGED
@@ -7,7 +7,7 @@ def transpose(matrix):
7
 
8
  demo = gr.Interface(
9
  transpose,
10
- gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3, show_fullscreen_button=True),
11
  "numpy",
12
  examples=[
13
  [np.zeros((30, 30)).tolist()],
 
7
 
8
  demo = gr.Interface(
9
  transpose,
10
+ gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3, buttons=["fullscreen"]),
11
  "numpy",
12
  examples=[
13
  [np.zeros((30, 30)).tolist()],
demos/native_plots/bar_plot_demo.py CHANGED
@@ -15,14 +15,14 @@ with gr.Blocks() as bar_plots:
15
  temp_sensor_data,
16
  x="time",
17
  y="temperature",
18
- show_export_button=True,
19
  )
20
  temp_by_time_location = gr.BarPlot(
21
  temp_sensor_data,
22
  x="time",
23
  y="temperature",
24
  color="location",
25
- show_export_button=True,
26
  )
27
 
28
  time_graphs = [temp_by_time, temp_by_time_location]
@@ -51,7 +51,7 @@ with gr.Blocks() as bar_plots:
51
  food_rating_data,
52
  x="cuisine",
53
  y="price",
54
- show_export_button=True,
55
  )
56
  with gr.Column(scale=0):
57
  gr.Button("Sort $ > $$$").click(lambda: gr.BarPlot(sort="y"), None, price_by_cuisine)
@@ -64,7 +64,7 @@ with gr.Blocks() as bar_plots:
64
  x="rating",
65
  y="price",
66
  x_bin=1,
67
- show_export_button=True,
68
  )
69
  price_by_rating_color = gr.BarPlot(
70
  food_rating_data,
@@ -73,7 +73,7 @@ with gr.Blocks() as bar_plots:
73
  color="cuisine",
74
  x_bin=1,
75
  color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
76
- show_export_button=True,
77
  )
78
 
79
  if __name__ == "__main__":
 
15
  temp_sensor_data,
16
  x="time",
17
  y="temperature",
18
+ buttons=["export"],
19
  )
20
  temp_by_time_location = gr.BarPlot(
21
  temp_sensor_data,
22
  x="time",
23
  y="temperature",
24
  color="location",
25
+ buttons=["export"],
26
  )
27
 
28
  time_graphs = [temp_by_time, temp_by_time_location]
 
51
  food_rating_data,
52
  x="cuisine",
53
  y="price",
54
+ buttons=["export"],
55
  )
56
  with gr.Column(scale=0):
57
  gr.Button("Sort $ > $$$").click(lambda: gr.BarPlot(sort="y"), None, price_by_cuisine)
 
64
  x="rating",
65
  y="price",
66
  x_bin=1,
67
+ buttons=["export"],
68
  )
69
  price_by_rating_color = gr.BarPlot(
70
  food_rating_data,
 
73
  color="cuisine",
74
  x_bin=1,
75
  color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
76
+ buttons=["export"],
77
  )
78
 
79
  if __name__ == "__main__":
demos/native_plots/line_plot_demo.py CHANGED
@@ -14,14 +14,14 @@ with gr.Blocks() as line_plots:
14
  temp_sensor_data,
15
  x="time",
16
  y="temperature",
17
- show_export_button=True,
18
  )
19
  temp_by_time_location = gr.LinePlot(
20
  temp_sensor_data,
21
  x="time",
22
  y="temperature",
23
  color="location",
24
- show_export_button=True,
25
  )
26
 
27
  time_graphs = [temp_by_time, temp_by_time_location]
@@ -49,14 +49,14 @@ with gr.Blocks() as line_plots:
49
  food_rating_data,
50
  x="cuisine",
51
  y="price",
52
- show_export_button=True,
53
  )
54
  with gr.Row():
55
  price_by_rating = gr.LinePlot(
56
  food_rating_data,
57
  x="rating",
58
  y="price",
59
- show_export_button=True,
60
  )
61
  price_by_rating_color = gr.LinePlot(
62
  food_rating_data,
@@ -64,7 +64,7 @@ with gr.Blocks() as line_plots:
64
  y="price",
65
  color="cuisine",
66
  color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
67
- show_export_button=True,
68
  )
69
 
70
  if __name__ == "__main__":
 
14
  temp_sensor_data,
15
  x="time",
16
  y="temperature",
17
+ buttons=["export"],
18
  )
19
  temp_by_time_location = gr.LinePlot(
20
  temp_sensor_data,
21
  x="time",
22
  y="temperature",
23
  color="location",
24
+ buttons=["export"],
25
  )
26
 
27
  time_graphs = [temp_by_time, temp_by_time_location]
 
49
  food_rating_data,
50
  x="cuisine",
51
  y="price",
52
+ buttons=["export"],
53
  )
54
  with gr.Row():
55
  price_by_rating = gr.LinePlot(
56
  food_rating_data,
57
  x="rating",
58
  y="price",
59
+ buttons=["export"],
60
  )
61
  price_by_rating_color = gr.LinePlot(
62
  food_rating_data,
 
64
  y="price",
65
  color="cuisine",
66
  color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
67
+ buttons=["export"],
68
  )
69
 
70
  if __name__ == "__main__":
demos/native_plots/scatter_plot_demo.py CHANGED
@@ -14,14 +14,14 @@ with gr.Blocks() as scatter_plots:
14
  temp_sensor_data,
15
  x="time",
16
  y="temperature",
17
- show_export_button=True,
18
  )
19
  temp_by_time_location = gr.ScatterPlot(
20
  temp_sensor_data,
21
  x="time",
22
  y="temperature",
23
  color="location",
24
- show_export_button=True,
25
  )
26
 
27
  time_graphs = [temp_by_time, temp_by_time_location]
@@ -49,7 +49,7 @@ with gr.Blocks() as scatter_plots:
49
  food_rating_data,
50
  x="cuisine",
51
  y="price",
52
- show_export_button=True,
53
  )
54
  with gr.Row():
55
  price_by_rating = gr.ScatterPlot(
@@ -57,15 +57,14 @@ with gr.Blocks() as scatter_plots:
57
  x="rating",
58
  y="price",
59
  color="wait",
60
- show_actions_button=True,
61
- show_export_button=True,
62
  )
63
  price_by_rating_color = gr.ScatterPlot(
64
  food_rating_data,
65
  x="rating",
66
  y="price",
67
  color="cuisine",
68
- show_export_button=True,
69
  )
70
 
71
  if __name__ == "__main__":
 
14
  temp_sensor_data,
15
  x="time",
16
  y="temperature",
17
+ buttons=["export"],
18
  )
19
  temp_by_time_location = gr.ScatterPlot(
20
  temp_sensor_data,
21
  x="time",
22
  y="temperature",
23
  color="location",
24
+ buttons=["export"],
25
  )
26
 
27
  time_graphs = [temp_by_time, temp_by_time_location]
 
49
  food_rating_data,
50
  x="cuisine",
51
  y="price",
52
+ buttons=["export"],
53
  )
54
  with gr.Row():
55
  price_by_rating = gr.ScatterPlot(
 
57
  x="rating",
58
  y="price",
59
  color="wait",
60
+ buttons=["actions", "export"],
 
61
  )
62
  price_by_rating_color = gr.ScatterPlot(
63
  food_rating_data,
64
  x="rating",
65
  y="price",
66
  color="cuisine",
67
+ buttons=["export"],
68
  )
69
 
70
  if __name__ == "__main__":
demos/reverse_audio/run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: reverse_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def reverse_audio(audio):\n", " sr, data = audio\n", " return (sr, np.flipud(data))\n", "\n", "input_audio = gr.Audio(\n", " sources=[\"microphone\"],\n", " waveform_options=gr.WaveformOptions(\n", " waveform_color=\"#01C6FF\",\n", " waveform_progress_color=\"#0066B4\",\n", " skip_length=2,\n", " show_controls=False,\n", " ),\n", ")\n", "demo = gr.Interface(\n", " fn=reverse_audio,\n", " inputs=input_audio,\n", " outputs=\"audio\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: reverse_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def reverse_audio(audio):\n", " sr, data = audio\n", " return (sr, np.flipud(data))\n", "\n", "input_audio = gr.Audio(\n", " sources=[\"microphone\"],\n", " waveform_options=gr.WaveformOptions(\n", " waveform_color=\"#01C6FF\",\n", " waveform_progress_color=\"#0066B4\",\n", " skip_length=2,\n", " show_recording_waveform=False,\n", " ),\n", ")\n", "demo = gr.Interface(\n", " fn=reverse_audio,\n", " inputs=input_audio,\n", " outputs=\"audio\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/reverse_audio/run.py CHANGED
@@ -13,7 +13,7 @@ input_audio = gr.Audio(
13
  waveform_color="#01C6FF",
14
  waveform_progress_color="#0066B4",
15
  skip_length=2,
16
- show_controls=False,
17
  ),
18
  )
19
  demo = gr.Interface(
 
13
  waveform_color="#01C6FF",
14
  waveform_progress_color="#0066B4",
15
  skip_length=2,
16
+ show_recording_waveform=False,
17
  ),
18
  )
19
  demo = gr.Interface(