Commit 2: Add 50 file(s)
Browse files- demos/image_mod_default_image/run.ipynb +1 -1
- demos/image_mod_default_image/run.py +1 -0
- demos/interface_random_slider/run.ipynb +1 -1
- demos/interface_random_slider/run.py +1 -0
- demos/kitchen_sink/run.ipynb +1 -1
- demos/kitchen_sink/run.py +1 -0
- demos/kitchen_sink_random/run.py +1 -0
- demos/matrix_transpose/run.ipynb +1 -1
- demos/matrix_transpose/run.py +2 -1
- demos/model3D/run.ipynb +1 -1
- demos/model3D/run.py +1 -0
- demos/native_plots/line_plot_demo.py +4 -0
- demos/reverse_audio/run.ipynb +1 -1
- demos/reverse_audio/run.py +2 -1
- demos/stream_frames/run.ipynb +1 -1
- demos/stream_frames/run.py +2 -1
- demos/video_component/run.ipynb +1 -1
- demos/video_component/run.py +2 -1
- demos/zip_files/run.ipynb +1 -1
demos/image_mod_default_image/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_mod_default_image"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from gradio.media import get_image\n", "\n", "def image_mod(image):\n", " return image.rotate(45)\n", "\n", "# get_image() returns file paths to sample media included with Gradio\n", "cheetah = get_image(\"cheetah1.jpg\")\n", "\n", "demo = gr.Interface(image_mod, gr.Image(type=\"pil\", value=cheetah), \"image\",\n", " flagging_options=[\"blurry\", \"incorrect\", \"other\"], examples=[\n", " get_image(\"lion.jpg\"),\n", " get_image(\"logo.png\")\n", " ])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch(max_file_size=\"70kb\")\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_mod_default_image"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from gradio.media import get_image\n", "\n", "def image_mod(image):\n", " return image.rotate(45)\n", "\n", "# get_image() returns file paths to sample media included with Gradio\n", "cheetah = get_image(\"cheetah1.jpg\")\n", "\n", "demo = gr.Interface(image_mod, gr.Image(type=\"pil\", value=cheetah), \"image\",\n", " api_name=\"predict\",\n", " flagging_options=[\"blurry\", \"incorrect\", \"other\"], examples=[\n", " get_image(\"lion.jpg\"),\n", " get_image(\"logo.png\")\n", " ])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch(max_file_size=\"70kb\")\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/image_mod_default_image/run.py
CHANGED
|
@@ -8,6 +8,7 @@ def image_mod(image):
|
|
| 8 |
cheetah = get_image("cheetah1.jpg")
|
| 9 |
|
| 10 |
demo = gr.Interface(image_mod, gr.Image(type="pil", value=cheetah), "image",
|
|
|
|
| 11 |
flagging_options=["blurry", "incorrect", "other"], examples=[
|
| 12 |
get_image("lion.jpg"),
|
| 13 |
get_image("logo.png")
|
|
|
|
| 8 |
cheetah = get_image("cheetah1.jpg")
|
| 9 |
|
| 10 |
demo = gr.Interface(image_mod, gr.Image(type="pil", value=cheetah), "image",
|
| 11 |
+
api_name="predict",
|
| 12 |
flagging_options=["blurry", "incorrect", "other"], examples=[
|
| 13 |
get_image("lion.jpg"),
|
| 14 |
get_image("logo.png")
|
demos/interface_random_slider/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: interface_random_slider"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def func(slider_1, slider_2, *args):\n", " return slider_1 + slider_2 * 5\n", "\n", "demo = gr.Interface(\n", " func,\n", " [\n", " gr.Slider(minimum=1.5, maximum=250000.89, randomize=True, label=\"Random Big Range\"),\n", " gr.Slider(minimum=-1, maximum=1, randomize=True, step=0.05, label=\"Random only multiple of 0.05 allowed\"),\n", " gr.Slider(minimum=0, maximum=1, randomize=True, step=0.25, label=\"Random only multiples of 0.25 allowed\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, step=3, label=\"Random between -100 and 100 step 3\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, label=\"Random between -100 and 100\"),\n", " gr.Slider(value=0.25, minimum=5, maximum=30, step=-1),\n", " ],\n", " \"number\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: interface_random_slider"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def func(slider_1, slider_2, *args):\n", " return slider_1 + slider_2 * 5\n", "\n", "demo = gr.Interface(\n", " func,\n", " [\n", " gr.Slider(minimum=1.5, maximum=250000.89, randomize=True, label=\"Random Big Range\"),\n", " gr.Slider(minimum=-1, maximum=1, randomize=True, step=0.05, label=\"Random only multiple of 0.05 allowed\"),\n", " gr.Slider(minimum=0, maximum=1, randomize=True, step=0.25, label=\"Random only multiples of 0.25 allowed\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, step=3, label=\"Random between -100 and 100 step 3\"),\n", " gr.Slider(minimum=-100, maximum=100, randomize=True, label=\"Random between -100 and 100\"),\n", " gr.Slider(value=0.25, minimum=5, maximum=30, step=-1),\n", " ],\n", " \"number\",\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/interface_random_slider/run.py
CHANGED
|
@@ -14,6 +14,7 @@ demo = gr.Interface(
|
|
| 14 |
gr.Slider(value=0.25, minimum=5, maximum=30, step=-1),
|
| 15 |
],
|
| 16 |
"number",
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
if __name__ == "__main__":
|
|
|
|
| 14 |
gr.Slider(value=0.25, minimum=5, maximum=30, step=-1),
|
| 15 |
],
|
| 16 |
"number",
|
| 17 |
+
api_name="predict"
|
| 18 |
)
|
| 19 |
|
| 20 |
if __name__ == "__main__":
|
demos/kitchen_sink/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: kitchen_sink"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import os\n", "import json\n", "\n", "import numpy as np\n", "\n", "import gradio as gr\n", "from gradio.media import get_image, get_video, get_audio, get_file\n", "\n", "CHOICES = [\"foo\", \"bar\", \"baz\"]\n", "JSONOBJ = \"\"\"{\"items\":{\"item\":[{\"id\": \"0001\",\"type\": null,\"is_good\": false,\"ppu\": 0.55,\"batters\":{\"batter\":[{ \"id\": \"1001\", \"type\": \"Regular\" },{ \"id\": \"1002\", \"type\": \"Chocolate\" },{ \"id\": \"1003\", \"type\": \"Blueberry\" },{ \"id\": \"1004\", \"type\": \"Devil's Food\" }]},\"topping\":[{ \"id\": \"5001\", \"type\": \"None\" },{ \"id\": \"5002\", \"type\": \"Glazed\" },{ \"id\": \"5005\", \"type\": \"Sugar\" },{ \"id\": \"5007\", \"type\": \"Powdered Sugar\" },{ \"id\": \"5006\", \"type\": \"Chocolate with Sprinkles\" },{ \"id\": \"5003\", \"type\": \"Chocolate\" },{ \"id\": \"5004\", \"type\": \"Maple\" }]}]}}\"\"\"\n", "\n", "def fn(\n", " text1,\n", " text2,\n", " num,\n", " slider1,\n", " slider2,\n", " single_checkbox,\n", " checkboxes,\n", " radio,\n", " dropdown,\n", " multi_dropdown,\n", " im1,\n", " # im2,\n", " # im3,\n", " im4,\n", " video,\n", " audio1,\n", " audio2,\n", " file,\n", " df1,\n", " time,\n", "):\n", " return (\n", " (text1 if single_checkbox else text2)\n", " + \", selected:\"\n", " + \", \".join(checkboxes), # Text\n", " {\n", " \"positive\": num / (num + slider1 + slider2),\n", " \"negative\": slider1 / (num + slider1 + slider2),\n", " \"neutral\": slider2 / (num + slider1 + slider2),\n", " }, # Label\n", " (audio1[0], np.flipud(audio1[1]))\n", " if audio1 is not None\n", " else get_audio(\"cantina.wav\"), # Audio\n", " np.flipud(im1)\n", " if im1 is not None\n", " else get_image(\"cheetah1.jpg\"), # Image\n", " video\n", " if video is not None\n", " else get_video(\"world.mp4\"), # Video\n", " [\n", " (\"The\", \"art\"),\n", " (\"quick brown\", \"adj\"),\n", " (\"fox\", \"nn\"),\n", " (\"jumped\", \"vrb\"),\n", " (\"testing testing testing\", None),\n", " (\"over\", \"prp\"),\n", " (\"the\", \"art\"),\n", " (\"testing\", None),\n", " (\"lazy\", \"adj\"),\n", " (\"dogs\", \"nn\"),\n", " (\".\", \"punc\"),\n", " ]\n", " + [(f\"test {x}\", f\"test {x}\") for x in range(10)], # HighlightedText\n", " # [(\"The testing testing testing\", None), (\"quick brown\", 0.2), (\"fox\", 1), (\"jumped\", -1), (\"testing testing testing\", 0), (\"over\", 0), (\"the\", 0), (\"testing\", 0), (\"lazy\", 1), (\"dogs\", 0), (\".\", 1)] + [(f\"test {x}\", x/10) for x in range(-10, 10)], # HighlightedText\n", " [\n", " (\"The testing testing testing\", None),\n", " (\"over\", 0.6),\n", " (\"the\", 0.2),\n", " (\"testing\", None),\n", " (\"lazy\", -0.1),\n", " (\"dogs\", 0.4),\n", " (\".\", 0),\n", " ]\n", " + [(\"test\", x / 10) for x in range(-10, 10)], # HighlightedText\n", " json.loads(JSONOBJ), # JSON\n", " \"<button style='background-color: red'>Click Me: \"\n", " + radio\n", " + \"</button>\", # HTML\n", " get_file(\"titanic.csv\"), # File\n", " df1, # Dataframe\n", " np.random.randint(0, 10, (4, 4)), # Dataframe\n", " time, # DateTime\n", " )\n", "\n", "demo = gr.Interface(\n", " fn,\n", " inputs=[\n", " gr.Textbox(value=\"Lorem ipsum\", label=\"Textbox\"),\n", " gr.Textbox(lines=3, placeholder=\"Type here..\", label=\"Textbox 2\"),\n", " gr.Number(label=\"Number\", value=42),\n", " gr.Slider(10, 20, value=15, label=\"Slider: 10 - 20\"),\n", " gr.Slider(maximum=20, step=0.04, label=\"Slider: step @ 0.04\"),\n", " gr.Checkbox(label=\"Checkbox\"),\n", " gr.CheckboxGroup(label=\"CheckboxGroup\", choices=CHOICES, value=CHOICES[0:2]),\n", " gr.Radio(label=\"Radio\", choices=CHOICES, value=CHOICES[2]),\n", " gr.Dropdown(label=\"Dropdown\", choices=CHOICES),\n", " gr.Dropdown(\n", " label=\"Multiselect Dropdown (Max choice: 2)\",\n", " choices=CHOICES,\n", " multiselect=True,\n", " max_choices=2,\n", " ),\n", " gr.Image(label=\"Image\"),\n", " # gr.Image(label=\"Image w/ Cropper\", tool=\"select\"),\n", " # gr.Image(label=\"Sketchpad\", source=\"canvas\"),\n", " gr.Image(label=\"Webcam\", sources=[\"webcam\"]),\n", " gr.Video(label=\"Video\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Audio(label=\"Microphone\", sources=[\"microphone\"]),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\", headers=[\"Name\", \"Age\", \"Gender\"]),\n", " gr.DateTime(label=\"DateTime\"),\n", " ],\n", " outputs=[\n", " gr.Textbox(label=\"Textbox\"),\n", " gr.Label(label=\"Label\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Image(label=\"Image\", elem_id=\"output-img\"),\n", " gr.Video(label=\"Video\"),\n", " gr.HighlightedText(\n", " label=\"HighlightedText\", color_map={\"punc\": \"pink\", \"test 0\": \"blue\"}\n", " ),\n", " gr.HighlightedText(label=\"HighlightedText\", show_legend=True),\n", " gr.JSON(label=\"JSON\", show_indices=True),\n", " gr.HTML(label=\"HTML\"),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\"),\n", " gr.Dataframe(label=\"Numpy\"),\n", " gr.DateTime(label=\"DateTime\"),\n", " ],\n", " examples=[\n", " [\n", " \"the quick brown fox\",\n", " \"jumps over the lazy dog\",\n", " 10,\n", " 12,\n", " 4,\n", " True,\n", " [\"foo\", \"baz\"],\n", " \"baz\",\n", " \"bar\",\n", " [\"foo\", \"bar\"],\n", " get_image(\"cheetah1.jpg\"),\n", " # get_image(\"cheetah1.jpg\"),\n", " # get_image(\"cheetah1.jpg\"),\n", " get_image(\"cheetah1.jpg\"),\n", " get_video(\"world.mp4\"),\n", " get_audio(\"cantina.wav\"),\n", " get_audio(\"cantina.wav\"),\n", " get_file(\"titanic.csv\"),\n", " [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 1, 2], [3, 4, 5, 6]],\n", " \"2025-06-10 12:00:00\",\n", " ]\n", " ]\n", " * 3,\n", " title=\"Kitchen Sink\",\n", " description=\"Try out all the components!\",\n", " article=\"Learn more about [Gradio](http://gradio.app)\",\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: kitchen_sink"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import os\n", "import json\n", "\n", "import numpy as np\n", "\n", "import gradio as gr\n", "from gradio.media import get_image, get_video, get_audio, get_file\n", "\n", "CHOICES = [\"foo\", \"bar\", \"baz\"]\n", "JSONOBJ = \"\"\"{\"items\":{\"item\":[{\"id\": \"0001\",\"type\": null,\"is_good\": false,\"ppu\": 0.55,\"batters\":{\"batter\":[{ \"id\": \"1001\", \"type\": \"Regular\" },{ \"id\": \"1002\", \"type\": \"Chocolate\" },{ \"id\": \"1003\", \"type\": \"Blueberry\" },{ \"id\": \"1004\", \"type\": \"Devil's Food\" }]},\"topping\":[{ \"id\": \"5001\", \"type\": \"None\" },{ \"id\": \"5002\", \"type\": \"Glazed\" },{ \"id\": \"5005\", \"type\": \"Sugar\" },{ \"id\": \"5007\", \"type\": \"Powdered Sugar\" },{ \"id\": \"5006\", \"type\": \"Chocolate with Sprinkles\" },{ \"id\": \"5003\", \"type\": \"Chocolate\" },{ \"id\": \"5004\", \"type\": \"Maple\" }]}]}}\"\"\"\n", "\n", "def fn(\n", " text1,\n", " text2,\n", " num,\n", " slider1,\n", " slider2,\n", " single_checkbox,\n", " checkboxes,\n", " radio,\n", " dropdown,\n", " multi_dropdown,\n", " im1,\n", " # im2,\n", " # im3,\n", " im4,\n", " video,\n", " audio1,\n", " audio2,\n", " file,\n", " df1,\n", " time,\n", "):\n", " return (\n", " (text1 if single_checkbox else text2)\n", " + \", selected:\"\n", " + \", \".join(checkboxes), # Text\n", " {\n", " \"positive\": num / (num + slider1 + slider2),\n", " \"negative\": slider1 / (num + slider1 + slider2),\n", " \"neutral\": slider2 / (num + slider1 + slider2),\n", " }, # Label\n", " (audio1[0], np.flipud(audio1[1]))\n", " if audio1 is not None\n", " else get_audio(\"cantina.wav\"), # Audio\n", " np.flipud(im1)\n", " if im1 is not None\n", " else get_image(\"cheetah1.jpg\"), # Image\n", " video\n", " if video is not None\n", " else get_video(\"world.mp4\"), # Video\n", " [\n", " (\"The\", \"art\"),\n", " (\"quick brown\", \"adj\"),\n", " (\"fox\", \"nn\"),\n", " (\"jumped\", \"vrb\"),\n", " (\"testing testing testing\", None),\n", " (\"over\", \"prp\"),\n", " (\"the\", \"art\"),\n", " (\"testing\", None),\n", " (\"lazy\", \"adj\"),\n", " (\"dogs\", \"nn\"),\n", " (\".\", \"punc\"),\n", " ]\n", " + [(f\"test {x}\", f\"test {x}\") for x in range(10)], # HighlightedText\n", " # [(\"The testing testing testing\", None), (\"quick brown\", 0.2), (\"fox\", 1), (\"jumped\", -1), (\"testing testing testing\", 0), (\"over\", 0), (\"the\", 0), (\"testing\", 0), (\"lazy\", 1), (\"dogs\", 0), (\".\", 1)] + [(f\"test {x}\", x/10) for x in range(-10, 10)], # HighlightedText\n", " [\n", " (\"The testing testing testing\", None),\n", " (\"over\", 0.6),\n", " (\"the\", 0.2),\n", " (\"testing\", None),\n", " (\"lazy\", -0.1),\n", " (\"dogs\", 0.4),\n", " (\".\", 0),\n", " ]\n", " + [(\"test\", x / 10) for x in range(-10, 10)], # HighlightedText\n", " json.loads(JSONOBJ), # JSON\n", " \"<button style='background-color: red'>Click Me: \"\n", " + radio\n", " + \"</button>\", # HTML\n", " get_file(\"titanic.csv\"), # File\n", " df1, # Dataframe\n", " np.random.randint(0, 10, (4, 4)), # Dataframe\n", " time, # DateTime\n", " )\n", "\n", "demo = gr.Interface(\n", " fn,\n", " inputs=[\n", " gr.Textbox(value=\"Lorem ipsum\", label=\"Textbox\"),\n", " gr.Textbox(lines=3, placeholder=\"Type here..\", label=\"Textbox 2\"),\n", " gr.Number(label=\"Number\", value=42),\n", " gr.Slider(10, 20, value=15, label=\"Slider: 10 - 20\"),\n", " gr.Slider(maximum=20, step=0.04, label=\"Slider: step @ 0.04\"),\n", " gr.Checkbox(label=\"Checkbox\"),\n", " gr.CheckboxGroup(label=\"CheckboxGroup\", choices=CHOICES, value=CHOICES[0:2]),\n", " gr.Radio(label=\"Radio\", choices=CHOICES, value=CHOICES[2]),\n", " gr.Dropdown(label=\"Dropdown\", choices=CHOICES),\n", " gr.Dropdown(\n", " label=\"Multiselect Dropdown (Max choice: 2)\",\n", " choices=CHOICES,\n", " multiselect=True,\n", " max_choices=2,\n", " ),\n", " gr.Image(label=\"Image\"),\n", " # gr.Image(label=\"Image w/ Cropper\", tool=\"select\"),\n", " # gr.Image(label=\"Sketchpad\", source=\"canvas\"),\n", " gr.Image(label=\"Webcam\", sources=[\"webcam\"]),\n", " gr.Video(label=\"Video\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Audio(label=\"Microphone\", sources=[\"microphone\"]),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\", headers=[\"Name\", \"Age\", \"Gender\"]),\n", " gr.DateTime(label=\"DateTime\"),\n", " ],\n", " outputs=[\n", " gr.Textbox(label=\"Textbox\"),\n", " gr.Label(label=\"Label\"),\n", " gr.Audio(label=\"Audio\"),\n", " gr.Image(label=\"Image\", elem_id=\"output-img\"),\n", " gr.Video(label=\"Video\"),\n", " gr.HighlightedText(\n", " label=\"HighlightedText\", color_map={\"punc\": \"pink\", \"test 0\": \"blue\"}\n", " ),\n", " gr.HighlightedText(label=\"HighlightedText\", show_legend=True),\n", " gr.JSON(label=\"JSON\", show_indices=True),\n", " gr.HTML(label=\"HTML\"),\n", " gr.File(label=\"File\"),\n", " gr.Dataframe(label=\"Dataframe\"),\n", " gr.Dataframe(label=\"Numpy\"),\n", " gr.DateTime(label=\"DateTime\"),\n", " ],\n", " examples=[\n", " [\n", " \"the quick brown fox\",\n", " \"jumps over the lazy dog\",\n", " 10,\n", " 12,\n", " 4,\n", " True,\n", " [\"foo\", \"baz\"],\n", " \"baz\",\n", " \"bar\",\n", " [\"foo\", \"bar\"],\n", " get_image(\"cheetah1.jpg\"),\n", " # get_image(\"cheetah1.jpg\"),\n", " # get_image(\"cheetah1.jpg\"),\n", " get_image(\"cheetah1.jpg\"),\n", " get_video(\"world.mp4\"),\n", " get_audio(\"cantina.wav\"),\n", " get_audio(\"cantina.wav\"),\n", " get_file(\"titanic.csv\"),\n", " [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 1, 2], [3, 4, 5, 6]],\n", " \"2025-06-10 12:00:00\",\n", " ]\n", " ]\n", " * 3,\n", " title=\"Kitchen Sink\",\n", " description=\"Try out all the components!\",\n", " article=\"Learn more about [Gradio](http://gradio.app)\",\n", " cache_examples=True,\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/kitchen_sink/run.py
CHANGED
|
@@ -159,6 +159,7 @@ demo = gr.Interface(
|
|
| 159 |
description="Try out all the components!",
|
| 160 |
article="Learn more about [Gradio](http://gradio.app)",
|
| 161 |
cache_examples=True,
|
|
|
|
| 162 |
)
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
|
|
|
| 159 |
description="Try out all the components!",
|
| 160 |
article="Learn more about [Gradio](http://gradio.app)",
|
| 161 |
cache_examples=True,
|
| 162 |
+
api_name="predict"
|
| 163 |
)
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
demos/kitchen_sink_random/run.py
CHANGED
|
@@ -86,6 +86,7 @@ demo = gr.Interface(
|
|
| 86 |
outputs=[
|
| 87 |
gr.State(value=lambda: random.choice(string.ascii_lowercase))
|
| 88 |
],
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
if __name__ == "__main__":
|
|
|
|
| 86 |
outputs=[
|
| 87 |
gr.State(value=lambda: random.choice(string.ascii_lowercase))
|
| 88 |
],
|
| 89 |
+
api_name="predict",
|
| 90 |
)
|
| 91 |
|
| 92 |
if __name__ == "__main__":
|
demos/matrix_transpose/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def transpose(matrix):\n", " return matrix.T\n", "\n", "demo = gr.Interface(\n", " transpose,\n", " gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3, buttons=[\"fullscreen\"]),\n", " \"numpy\",\n", " examples=[\n", " [np.zeros((30, 30)).tolist()],\n", " [np.ones((2, 2)).tolist()],\n", " [np.random.randint(0, 10, (3, 10)).tolist()],\n", " [np.random.randint(0, 10, (10, 3)).tolist()],\n", " [np.random.randint(0, 10, (10, 10)).tolist()],\n", " ],\n", " cache_examples=False\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def transpose(matrix):\n", " return matrix.T\n", "\n", "demo = gr.Interface(\n", " transpose,\n", " gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3, buttons=[\"fullscreen\"]),\n", " \"numpy\",\n", " examples=[\n", " [np.zeros((30, 30)).tolist()],\n", " [np.ones((2, 2)).tolist()],\n", " [np.random.randint(0, 10, (3, 10)).tolist()],\n", " [np.random.randint(0, 10, (10, 3)).tolist()],\n", " [np.random.randint(0, 10, (10, 10)).tolist()],\n", " ],\n", " cache_examples=False,\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/matrix_transpose/run.py
CHANGED
|
@@ -16,7 +16,8 @@ demo = gr.Interface(
|
|
| 16 |
[np.random.randint(0, 10, (10, 3)).tolist()],
|
| 17 |
[np.random.randint(0, 10, (10, 10)).tolist()],
|
| 18 |
],
|
| 19 |
-
cache_examples=False
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
if __name__ == "__main__":
|
|
|
|
| 16 |
[np.random.randint(0, 10, (10, 3)).tolist()],
|
| 17 |
[np.random.randint(0, 10, (10, 10)).tolist()],
|
| 18 |
],
|
| 19 |
+
cache_examples=False,
|
| 20 |
+
api_name="predict"
|
| 21 |
)
|
| 22 |
|
| 23 |
if __name__ == "__main__":
|
demos/model3D/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: model3D"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "# get_model3d() returns the file path to sample 3D models included with Gradio\n", "from gradio.media import get_model3d, MEDIA_ROOT\n", "\n", "\n", "def load_mesh(mesh_file_name):\n", " return mesh_file_name\n", "\n", "\n", "demo = gr.Interface(\n", " fn=load_mesh,\n", " inputs=gr.Model3D(label=\"Other name\", display_mode=\"wireframe\"),\n", " outputs=gr.Model3D(\n", " clear_color=(0.0, 0.0, 0.0, 0.0), label=\"3D Model\", display_mode=\"wireframe\"\n", " ),\n", " examples=[\n", " [get_model3d(\"Bunny.obj\")],\n", " [get_model3d(\"Duck.glb\")],\n", " [get_model3d(\"Fox.gltf\")],\n", " [get_model3d(\"face.obj\")],\n", " [get_model3d(\"sofia.stl\")],\n", " [\n", " \"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat\"\n", " ],\n", " [\n", " \"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/luigi/luigi.ply\"\n", " ],\n", " ],\n", " cache_examples=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch(allowed_paths=[str(MEDIA_ROOT)])\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: model3D"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "# get_model3d() returns the file path to sample 3D models included with Gradio\n", "from gradio.media import get_model3d, MEDIA_ROOT\n", "\n", "\n", "def load_mesh(mesh_file_name):\n", " return mesh_file_name\n", "\n", "\n", "demo = gr.Interface(\n", " fn=load_mesh,\n", " inputs=gr.Model3D(label=\"Other name\", display_mode=\"wireframe\"),\n", " outputs=gr.Model3D(\n", " clear_color=(0.0, 0.0, 0.0, 0.0), label=\"3D Model\", display_mode=\"wireframe\"\n", " ),\n", " examples=[\n", " [get_model3d(\"Bunny.obj\")],\n", " [get_model3d(\"Duck.glb\")],\n", " [get_model3d(\"Fox.gltf\")],\n", " [get_model3d(\"face.obj\")],\n", " [get_model3d(\"sofia.stl\")],\n", " [\n", " \"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat\"\n", " ],\n", " [\n", " \"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/luigi/luigi.ply\"\n", " ],\n", " ],\n", " cache_examples=True,\n", " api_name=\"predict\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch(allowed_paths=[str(MEDIA_ROOT)])\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/model3D/run.py
CHANGED
|
@@ -27,6 +27,7 @@ demo = gr.Interface(
|
|
| 27 |
],
|
| 28 |
],
|
| 29 |
cache_examples=True,
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
if __name__ == "__main__":
|
|
|
|
| 27 |
],
|
| 28 |
],
|
| 29 |
cache_examples=True,
|
| 30 |
+
api_name="predict",
|
| 31 |
)
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
demos/native_plots/line_plot_demo.py
CHANGED
|
@@ -54,14 +54,18 @@ with gr.Blocks() as line_plots:
|
|
| 54 |
with gr.Row():
|
| 55 |
price_by_rating = gr.LinePlot(
|
| 56 |
food_rating_data,
|
|
|
|
| 57 |
x="rating",
|
| 58 |
y="price",
|
|
|
|
| 59 |
buttons=["export"],
|
| 60 |
)
|
| 61 |
price_by_rating_color = gr.LinePlot(
|
| 62 |
food_rating_data,
|
|
|
|
| 63 |
x="rating",
|
| 64 |
y="price",
|
|
|
|
| 65 |
color="cuisine",
|
| 66 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 67 |
buttons=["export"],
|
|
|
|
| 54 |
with gr.Row():
|
| 55 |
price_by_rating = gr.LinePlot(
|
| 56 |
food_rating_data,
|
| 57 |
+
title="Price by Rating (for Ratings >2)",
|
| 58 |
x="rating",
|
| 59 |
y="price",
|
| 60 |
+
x_lim=[2, None],
|
| 61 |
buttons=["export"],
|
| 62 |
)
|
| 63 |
price_by_rating_color = gr.LinePlot(
|
| 64 |
food_rating_data,
|
| 65 |
+
title="Price by Rating (for Ratings <4)",
|
| 66 |
x="rating",
|
| 67 |
y="price",
|
| 68 |
+
x_lim=[None, 4],
|
| 69 |
color="cuisine",
|
| 70 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 71 |
buttons=["export"],
|
demos/reverse_audio/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: reverse_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def reverse_audio(audio):\n", " sr, data = audio\n", " return (sr, np.flipud(data))\n", "\n", "input_audio = gr.Audio(\n", " sources=[\"microphone\"],\n", " waveform_options=gr.WaveformOptions(\n", " waveform_color=\"#01C6FF\",\n", " waveform_progress_color=\"#0066B4\",\n", " skip_length=2,\n", " show_recording_waveform=False,\n", " ),\n", ")\n", "demo = gr.Interface(\n", " fn=reverse_audio,\n", " inputs=input_audio,\n", " outputs=\"audio\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: reverse_audio"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def reverse_audio(audio):\n", " sr, data = audio\n", " return (sr, np.flipud(data))\n", "\n", "input_audio = gr.Audio(\n", " sources=[\"microphone\"],\n", " waveform_options=gr.WaveformOptions(\n", " waveform_color=\"#01C6FF\",\n", " waveform_progress_color=\"#0066B4\",\n", " skip_length=2,\n", " show_recording_waveform=False,\n", " ),\n", ")\n", "demo = gr.Interface(\n", " fn=reverse_audio,\n", " inputs=input_audio,\n", " outputs=\"audio\",\n", " api_name=\"predict\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/reverse_audio/run.py
CHANGED
|
@@ -19,7 +19,8 @@ input_audio = gr.Audio(
|
|
| 19 |
demo = gr.Interface(
|
| 20 |
fn=reverse_audio,
|
| 21 |
inputs=input_audio,
|
| 22 |
-
outputs="audio"
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
if __name__ == "__main__":
|
|
|
|
| 19 |
demo = gr.Interface(
|
| 20 |
fn=reverse_audio,
|
| 21 |
inputs=input_audio,
|
| 22 |
+
outputs="audio",
|
| 23 |
+
api_name="predict",
|
| 24 |
)
|
| 25 |
|
| 26 |
if __name__ == "__main__":
|
demos/stream_frames/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_frames"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "def flip(im):\n", " return np.flipud(im)\n", "\n", "demo = gr.Interface(\n", " flip,\n", " gr.Image(sources=[\"webcam\"], streaming=True),\n", " \"image\",\n", " live=True\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_frames"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "def flip(im):\n", " return np.flipud(im)\n", "\n", "demo = gr.Interface(\n", " flip,\n", " gr.Image(sources=[\"webcam\"], streaming=True),\n", " \"image\",\n", " live=True,\n", " api_name=\"predict\",\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/stream_frames/run.py
CHANGED
|
@@ -8,7 +8,8 @@ demo = gr.Interface(
|
|
| 8 |
flip,
|
| 9 |
gr.Image(sources=["webcam"], streaming=True),
|
| 10 |
"image",
|
| 11 |
-
live=True
|
|
|
|
| 12 |
)
|
| 13 |
if __name__ == "__main__":
|
| 14 |
demo.launch()
|
|
|
|
| 8 |
flip,
|
| 9 |
gr.Image(sources=["webcam"], streaming=True),
|
| 10 |
"image",
|
| 11 |
+
live=True,
|
| 12 |
+
api_name="predict",
|
| 13 |
)
|
| 14 |
if __name__ == "__main__":
|
| 15 |
demo.launch()
|
demos/video_component/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: video_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "# get_video() returns the file path to sample videos included with Gradio\n", "from gradio.media import get_video\n", "\n", "demo = gr.Interface(\n", " fn=lambda x: x,\n", " inputs=gr.Video(),\n", " outputs=gr.Video(),\n", " examples=[\n", " [get_video(\"world.mp4\")],\n", " [get_video(\"a.mp4\")],\n", " [get_video(\"b.mp4\")],\n", " ],\n", " cache_examples=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: video_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "# get_video() returns the file path to sample videos included with Gradio\n", "from gradio.media import get_video\n", "\n", "demo = gr.Interface(\n", " fn=lambda x: x,\n", " inputs=gr.Video(),\n", " outputs=gr.Video(),\n", " examples=[\n", " [get_video(\"world.mp4\")],\n", " [get_video(\"a.mp4\")],\n", " [get_video(\"b.mp4\")],\n", " ],\n", " cache_examples=True,\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/video_component/run.py
CHANGED
|
@@ -11,7 +11,8 @@ demo = gr.Interface(
|
|
| 11 |
[get_video("a.mp4")],
|
| 12 |
[get_video("b.mp4")],
|
| 13 |
],
|
| 14 |
-
cache_examples=True
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
if __name__ == "__main__":
|
|
|
|
| 11 |
[get_video("a.mp4")],
|
| 12 |
[get_video("b.mp4")],
|
| 13 |
],
|
| 14 |
+
cache_examples=True,
|
| 15 |
+
api_name="predict"
|
| 16 |
)
|
| 17 |
|
| 18 |
if __name__ == "__main__":
|
demos/zip_files/run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: zip_files"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from zipfile import ZipFile\n", "\n", "import gradio as gr\n", "\n", "def zip_files(files):\n", " with ZipFile(\"tmp.zip\", \"w\") as zip_obj:\n", " for file in files:\n", " zip_obj.write(file.name, file.name.split(\"/\")[-1])\n", " return \"tmp.zip\"\n", "\n", "demo = gr.Interface(\n", " zip_files,\n", " gr.File(file_count=\"multiple\", file_types=[\"text\", \".json\", \".csv\"]),\n", " \"file\",\n", " examples=[[[gr.get_file(\"titanic.csv\"),\n", " gr.get_file(\"titanic.csv\"),\n", " gr.get_file(\"titanic.csv\")]]],\n", " cache_examples=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: zip_files"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from zipfile import ZipFile\n", "\n", "import gradio as gr\n", "\n", "def zip_files(files):\n", " with ZipFile(\"tmp.zip\", \"w\") as zip_obj:\n", " for file in files:\n", " zip_obj.write(file.name, file.name.split(\"/\")[-1])\n", " return \"tmp.zip\"\n", "\n", "demo = gr.Interface(\n", " zip_files,\n", " gr.File(file_count=\"multiple\", file_types=[\"text\", \".json\", \".csv\"]),\n", " \"file\",\n", " examples=[[[gr.get_file(\"titanic.csv\"),\n", " gr.get_file(\"titanic.csv\"),\n", " gr.get_file(\"titanic.csv\")]]],\n", " cache_examples=True,\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|