Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ ESM model configuration""" | |
| from dataclasses import asdict, dataclass | |
| from typing import Optional | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| # TODO Update this | |
| ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", | |
| # See all ESM models at https://huggingface.co/models?filter=esm | |
| } | |
| class EsmConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model | |
| according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
| defaults will yield a similar configuration to that of the ESM | |
| [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*): | |
| Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`ESMModel`]. | |
| mask_token_id (`int`, *optional*): | |
| The index of the mask token in the vocabulary. This must be included in the config because of the | |
| "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. | |
| pad_token_id (`int`, *optional*): | |
| The index of the padding token in the vocabulary. This must be included in the config because certain parts | |
| of the ESM code use this instead of the attention mask. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
| hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
| hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout ratio for the attention probabilities. | |
| max_position_embeddings (`int`, *optional*, defaults to 1026): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
| The epsilon used by the layer normalization layers. | |
| position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
| Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. | |
| For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
| [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
| For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
| with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| classifier_dropout (`float`, *optional*): | |
| The dropout ratio for the classification head. | |
| emb_layer_norm_before (`bool`, *optional*): | |
| Whether to apply layer normalization after embeddings but before the main stem of the network. | |
| token_dropout (`bool`, defaults to `False`): | |
| When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. | |
| Examples: | |
| ```python | |
| >>> from transformers import EsmModel, EsmConfig | |
| >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() | |
| >>> # Initializing a model from the configuration >>> model = ESMModel(configuration) | |
| >>> # Accessing the model configuration >>> configuration = model.config | |
| ```""" | |
| model_type = "esm" | |
| def __init__( | |
| self, | |
| vocab_size=None, | |
| mask_token_id=None, | |
| pad_token_id=None, | |
| hidden_size=768, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| intermediate_size=3072, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=1026, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-12, | |
| position_embedding_type="absolute", | |
| use_cache=True, | |
| classifier_dropout=None, | |
| emb_layer_norm_before=None, | |
| token_dropout=False, | |
| is_folding_model=False, | |
| esmfold_config=None, | |
| vocab_list=None, | |
| **kwargs | |
| ): | |
| super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.hidden_act = hidden_act | |
| self.intermediate_size = intermediate_size | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.position_embedding_type = position_embedding_type | |
| self.use_cache = use_cache | |
| self.classifier_dropout = classifier_dropout | |
| self.emb_layer_norm_before = emb_layer_norm_before | |
| self.token_dropout = token_dropout | |
| self.is_folding_model = is_folding_model | |
| if is_folding_model: | |
| if esmfold_config is None: | |
| logger.info("No esmfold_config supplied for folding model, using default values.") | |
| esmfold_config = EsmFoldConfig() | |
| elif isinstance(esmfold_config, dict): | |
| esmfold_config = EsmFoldConfig(**esmfold_config) | |
| self.esmfold_config = esmfold_config | |
| if vocab_list is None: | |
| logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") | |
| self.vocab_list = get_default_vocab_list() | |
| else: | |
| self.vocab_list = vocab_list | |
| else: | |
| self.esmfold_config = None | |
| self.vocab_list = None | |
| if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False): | |
| raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
| Returns: | |
| `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = super().to_dict() | |
| if isinstance(self.esmfold_config, EsmFoldConfig): | |
| output["esmfold_config"] = self.esmfold_config.to_dict() | |
| return output | |
| class EsmFoldConfig: | |
| esm_type: str = None | |
| fp16_esm: bool = True | |
| use_esm_attn_map: bool = False | |
| esm_ablate_pairwise: bool = False | |
| esm_ablate_sequence: bool = False | |
| esm_input_dropout: float = 0 | |
| embed_aa: bool = True | |
| bypass_lm: bool = False | |
| lddt_head_hid_dim: int = 128 | |
| trunk: "TrunkConfig" = None | |
| def __post_init__(self): | |
| if self.trunk is None: | |
| self.trunk = TrunkConfig() | |
| elif isinstance(self.trunk, dict): | |
| self.trunk = TrunkConfig(**self.trunk) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
| Returns: | |
| `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = asdict(self) | |
| output["trunk"] = self.trunk.to_dict() | |
| return output | |
| class TrunkConfig: | |
| num_blocks: int = 48 | |
| sequence_state_dim: int = 1024 | |
| pairwise_state_dim: int = 128 | |
| sequence_head_width: int = 32 | |
| pairwise_head_width: int = 32 | |
| position_bins: int = 32 | |
| dropout: float = 0 | |
| layer_drop: float = 0 | |
| cpu_grad_checkpoint: bool = False | |
| max_recycles: int = 4 | |
| chunk_size: Optional[int] = 128 | |
| structure_module: "StructureModuleConfig" = None | |
| def __post_init__(self): | |
| if self.structure_module is None: | |
| self.structure_module = StructureModuleConfig() | |
| elif isinstance(self.structure_module, dict): | |
| self.structure_module = StructureModuleConfig(**self.structure_module) | |
| if self.max_recycles <= 0: | |
| raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.") | |
| if self.sequence_state_dim % self.sequence_state_dim != 0: | |
| raise ValueError( | |
| "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" | |
| f" {self.sequence_state_dim} and {self.sequence_state_dim}." | |
| ) | |
| if self.pairwise_state_dim % self.pairwise_state_dim != 0: | |
| raise ValueError( | |
| "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" | |
| f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." | |
| ) | |
| sequence_num_heads = self.sequence_state_dim // self.sequence_head_width | |
| pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width | |
| if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: | |
| raise ValueError( | |
| "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" | |
| f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." | |
| ) | |
| if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: | |
| raise ValueError( | |
| "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" | |
| f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." | |
| ) | |
| if self.pairwise_state_dim % 2 != 0: | |
| raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.") | |
| if self.dropout >= 0.4: | |
| raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.") | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
| Returns: | |
| `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = asdict(self) | |
| output["structure_module"] = self.structure_module.to_dict() | |
| return output | |
| class StructureModuleConfig: | |
| """ | |
| Args: | |
| sequence_dim: | |
| Single representation channel dimension | |
| pairwise_dim: | |
| Pair representation channel dimension | |
| ipa_dim: | |
| IPA hidden channel dimension | |
| resnet_dim: | |
| Angle resnet (Alg. 23 lines 11-14) hidden channel dimension | |
| num_heads_ipa: | |
| Number of IPA heads | |
| num_qk_points: | |
| Number of query/key points to generate during IPA | |
| num_v_points: | |
| Number of value points to generate during IPA | |
| dropout_rate: | |
| Dropout rate used throughout the layer | |
| num_blocks: | |
| Number of structure module blocks | |
| num_transition_layers: | |
| Number of layers in the single representation transition (Alg. 23 lines 8-9) | |
| num_resnet_blocks: | |
| Number of blocks in the angle resnet | |
| num_angles: | |
| Number of angles to generate in the angle resnet | |
| trans_scale_factor: | |
| Scale of single representation transition hidden dimension | |
| epsilon: | |
| Small number used in angle resnet normalization | |
| inf: | |
| Large number used for attention masking | |
| """ | |
| sequence_dim: int = 384 | |
| pairwise_dim: int = 128 | |
| ipa_dim: int = 16 | |
| resnet_dim: int = 128 | |
| num_heads_ipa: int = 12 | |
| num_qk_points: int = 4 | |
| num_v_points: int = 8 | |
| dropout_rate: float = 0.1 | |
| num_blocks: int = 8 | |
| num_transition_layers: int = 1 | |
| num_resnet_blocks: int = 2 | |
| num_angles: int = 7 | |
| trans_scale_factor: int = 10 | |
| epsilon: float = 1e-8 | |
| inf: float = 1e5 | |
| def to_dict(self): | |
| return asdict(self) | |
| def get_default_vocab_list(): | |
| return ( | |
| "<cls>", | |
| "<pad>", | |
| "<eos>", | |
| "<unk>", | |
| "L", | |
| "A", | |
| "G", | |
| "V", | |
| "S", | |
| "E", | |
| "R", | |
| "T", | |
| "I", | |
| "D", | |
| "P", | |
| "K", | |
| "Q", | |
| "N", | |
| "F", | |
| "Y", | |
| "M", | |
| "H", | |
| "W", | |
| "C", | |
| "X", | |
| "B", | |
| "U", | |
| "Z", | |
| "O", | |
| ".", | |
| "-", | |
| "<null_1>", | |
| "<mask>", | |
| ) | |