Clear audio recording after submission, switch to distil-whisper model from transformers for speech to text.
Browse files- app.py +28 -7
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import os
|
|
| 2 |
from pathlib import Path
|
| 3 |
import gradio as gr
|
| 4 |
import re
|
| 5 |
-
import
|
|
|
|
| 6 |
import requests
|
| 7 |
|
| 8 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -10,6 +11,29 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 10 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
| 11 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
code_pattern = r'```python\n(.*?)```'
|
| 14 |
|
| 15 |
starting_app_code = """import gradio as gr
|
|
@@ -140,12 +164,9 @@ def generate_text(code, prompt):
|
|
| 140 |
return assistant_reply, new_code
|
| 141 |
|
| 142 |
|
| 143 |
-
model = whisper.load_model('medium')
|
| 144 |
-
|
| 145 |
-
|
| 146 |
def transcribe(audio):
|
| 147 |
-
result =
|
| 148 |
-
return result["text"]
|
| 149 |
|
| 150 |
|
| 151 |
def copy_notify(code):
|
|
@@ -173,7 +194,7 @@ with gr.Blocks() as demo:
|
|
| 173 |
update_btn = gr.Button("Update App", variant="primary")
|
| 174 |
update_btn.click(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 175 |
in_prompt.submit(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 176 |
-
in_audio.stop_recording(transcribe, [in_audio], [in_prompt]).then(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 177 |
with gr.Row():
|
| 178 |
with gr.Column():
|
| 179 |
gr.Markdown("## 3. Export your app to share!")
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
import gradio as gr
|
| 4 |
import re
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 7 |
import requests
|
| 8 |
|
| 9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 11 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
| 12 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 13 |
|
| 14 |
+
def init_speech_to_text_model():
|
| 15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 17 |
+
|
| 18 |
+
model_id = "distil-whisper/distil-large-v2"
|
| 19 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 20 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 21 |
+
)
|
| 22 |
+
model.to(device)
|
| 23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 24 |
+
return pipeline(
|
| 25 |
+
"automatic-speech-recognition",
|
| 26 |
+
model=model,
|
| 27 |
+
tokenizer=processor.tokenizer,
|
| 28 |
+
feature_extractor=processor.feature_extractor,
|
| 29 |
+
max_new_tokens=128,
|
| 30 |
+
torch_dtype=torch_dtype,
|
| 31 |
+
device=device,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
whisper_pipe = init_speech_to_text_model()
|
| 36 |
+
|
| 37 |
code_pattern = r'```python\n(.*?)```'
|
| 38 |
|
| 39 |
starting_app_code = """import gradio as gr
|
|
|
|
| 164 |
return assistant_reply, new_code
|
| 165 |
|
| 166 |
|
|
|
|
|
|
|
|
|
|
| 167 |
def transcribe(audio):
|
| 168 |
+
result = whisper_pipe(audio)
|
| 169 |
+
return result["text"], None
|
| 170 |
|
| 171 |
|
| 172 |
def copy_notify(code):
|
|
|
|
| 194 |
update_btn = gr.Button("Update App", variant="primary")
|
| 195 |
update_btn.click(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 196 |
in_prompt.submit(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 197 |
+
in_audio.stop_recording(transcribe, [in_audio], [in_prompt, in_audio]).then(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
| 198 |
with gr.Row():
|
| 199 |
with gr.Column():
|
| 200 |
gr.Markdown("## 3. Export your app to share!")
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|