Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
from transformers import CanineModel, CanineForTokenClassification, CaninePreTrainedModel, CanineTokenizer
|
| 3 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
arabic_to_hebrew = {
|
| 8 |
+
# regular letters
|
| 9 |
+
"ا": "א", "أ": "א", "إ": "א", "ء": "א", "ئ": "א", "ؤ": "א",
|
| 10 |
+
"آ": "אא", "ى": "א", "ب": "ב", "ت": "ת", "ث": "ת'", "ج": "ג'",
|
| 11 |
+
"ح": "ח", "خ": "ח'", "د": "ד", "ذ": "ד'", "ر": "ר", "ز": "ז",
|
| 12 |
+
"س": "ס", "ش": "ש", "ص": "צ", "ض": "צ'", "ط": "ט", "ظ": "ט'",
|
| 13 |
+
"ع": "ע", "غ": "ע'", "ف": "פ", "ق": "ק", "ك": "כ", "ل": "ל",
|
| 14 |
+
"م": "מ", "ن": "נ", "ه": "ה", "و": "ו", "ي": "י", "ة": "ה",
|
| 15 |
+
# special characters
|
| 16 |
+
"،": ",", "َ": "ַ", "ُ": "ֻ", "ِ": "ִ",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
final_letters = {
|
| 20 |
+
"ن": "ן", "م": "ם", "ص": "ץ", "ض": "ץ'", "ف": "ף",
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
def to_taatik(arabic):
|
| 24 |
+
taatik = []
|
| 25 |
+
for index, letter in enumerate(arabic):
|
| 26 |
+
if (
|
| 27 |
+
(index == len(arabic) - 1 or arabic[index + 1] in {" ", ".", "،"}) and
|
| 28 |
+
letter in final_letters
|
| 29 |
+
):
|
| 30 |
+
taatik.append(final_letters[letter])
|
| 31 |
+
elif letter not in arabic_to_hebrew:
|
| 32 |
+
taatik.append(letter)
|
| 33 |
+
else:
|
| 34 |
+
taatik.append(arabic_to_hebrew[letter])
|
| 35 |
+
return taatik
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class TaatikModel(CaninePreTrainedModel):
|
| 39 |
+
# based on CaninePreTrainedModel
|
| 40 |
+
# slightly modified for multilabel classification
|
| 41 |
+
|
| 42 |
+
def __init__(self, config, num_labels=7):
|
| 43 |
+
# Note: one label for each nikud type, plus one for the deletion flag
|
| 44 |
+
super().__init__(config)
|
| 45 |
+
config.num_labels = num_labels
|
| 46 |
+
self.num_labels = config.num_labels
|
| 47 |
+
|
| 48 |
+
self.canine = CanineModel(config)
|
| 49 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 50 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 51 |
+
|
| 52 |
+
# Initialize weights and apply final processing
|
| 53 |
+
self.post_init()
|
| 54 |
+
|
| 55 |
+
self.criterion = nn.BCEWithLogitsLoss()
|
| 56 |
+
|
| 57 |
+
def forward(
|
| 58 |
+
self,
|
| 59 |
+
input_ids=None,
|
| 60 |
+
attention_mask=None,
|
| 61 |
+
token_type_ids=None,
|
| 62 |
+
position_ids=None,
|
| 63 |
+
head_mask=None,
|
| 64 |
+
inputs_embeds=None,
|
| 65 |
+
labels=None,
|
| 66 |
+
output_attentions=None,
|
| 67 |
+
output_hidden_states=None,
|
| 68 |
+
):
|
| 69 |
+
|
| 70 |
+
outputs = self.canine(
|
| 71 |
+
input_ids,
|
| 72 |
+
attention_mask=attention_mask,
|
| 73 |
+
token_type_ids=token_type_ids,
|
| 74 |
+
position_ids=position_ids,
|
| 75 |
+
head_mask=head_mask,
|
| 76 |
+
inputs_embeds=inputs_embeds,
|
| 77 |
+
output_attentions=output_attentions,
|
| 78 |
+
output_hidden_states=output_hidden_states
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
sequence_output = outputs[0]
|
| 82 |
+
|
| 83 |
+
sequence_output = self.dropout(sequence_output)
|
| 84 |
+
logits = self.classifier(sequence_output)
|
| 85 |
+
|
| 86 |
+
loss = None
|
| 87 |
+
if labels is not None:
|
| 88 |
+
# print(logits)
|
| 89 |
+
# print("-----------")
|
| 90 |
+
# print(labels)
|
| 91 |
+
loss = self.criterion(logits, labels)
|
| 92 |
+
|
| 93 |
+
return TokenClassifierOutput(
|
| 94 |
+
loss=loss,
|
| 95 |
+
logits=logits,
|
| 96 |
+
hidden_states=outputs.hidden_states,
|
| 97 |
+
attentions=outputs.attentions,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
|
| 101 |
+
# model = TashkeelModel.from_pretrained("google/canine-c")
|
| 102 |
+
|
| 103 |
+
tokenizer = CanineTokenizer.from_pretrained("google/canine-s")
|
| 104 |
+
# model = TaatikModel.from_pretrained("google/canine-s")
|
| 105 |
+
# model = TaatikModel.from_pretrained("./checkpoint-19034/")
|
| 106 |
+
model = TaatikModel.from_pretrained("guymorlan/Arabic2Taatik")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def convert_nikkud_to_harakat(nikkud):
|
| 110 |
+
labels = []
|
| 111 |
+
if "SHADDA" in nikkud:
|
| 112 |
+
labels.append("SHADDA")
|
| 113 |
+
if "TSERE" in nikkud:
|
| 114 |
+
labels.append("KASRA")
|
| 115 |
+
if "HOLAM" in nikkud:
|
| 116 |
+
labels.append("DAMMA")
|
| 117 |
+
if "PATACH" in nikkud:
|
| 118 |
+
labels.append("FATHA")
|
| 119 |
+
if "SHVA" in nikkud:
|
| 120 |
+
labels.append("SUKUN")
|
| 121 |
+
if "KUBUTZ" in nikkud:
|
| 122 |
+
labels.append("DAMMA")
|
| 123 |
+
if "HIRIQ" in nikkud:
|
| 124 |
+
labels.append("KASRA")
|
| 125 |
+
return labels
|
| 126 |
+
|
| 127 |
+
def convert_binary_to_labels(binary_labels):
|
| 128 |
+
labels = []
|
| 129 |
+
if binary_labels[0] == 1:
|
| 130 |
+
labels.append("SHADDA")
|
| 131 |
+
if binary_labels[1] == 1:
|
| 132 |
+
labels.append("TSERE")
|
| 133 |
+
if binary_labels[2] == 1:
|
| 134 |
+
labels.append("HOLAM")
|
| 135 |
+
if binary_labels[3] == 1:
|
| 136 |
+
labels.append("PATACH")
|
| 137 |
+
if binary_labels[4] == 1:
|
| 138 |
+
labels.append("SHVA")
|
| 139 |
+
if binary_labels[5] == 1:
|
| 140 |
+
labels.append("KUBUTZ")
|
| 141 |
+
if binary_labels[6] == 1:
|
| 142 |
+
labels.append("HIRIQ")
|
| 143 |
+
return labels
|
| 144 |
+
|
| 145 |
+
def convert_label_names_to_chars(label):
|
| 146 |
+
if label == "SHADDA":
|
| 147 |
+
return "ّ"
|
| 148 |
+
if label == "TSERE":
|
| 149 |
+
return "ֵ"
|
| 150 |
+
if label == "HOLAM":
|
| 151 |
+
return "ֹ"
|
| 152 |
+
if label == "PATACH":
|
| 153 |
+
return "ַ"
|
| 154 |
+
if label == "SHVA":
|
| 155 |
+
return "ְ"
|
| 156 |
+
if label == "KUBUTZ":
|
| 157 |
+
return "ֻ"
|
| 158 |
+
if label == "HIRIQ":
|
| 159 |
+
return "ִ"
|
| 160 |
+
|
| 161 |
+
# for these, return arabic harakat
|
| 162 |
+
if label == "DAMMA":
|
| 163 |
+
return "ُ"
|
| 164 |
+
if label == "KASRA":
|
| 165 |
+
return "ِ"
|
| 166 |
+
if label == "FATHA":
|
| 167 |
+
return "َ"
|
| 168 |
+
if label == "SUKUN":
|
| 169 |
+
return "ْ"
|
| 170 |
+
return ""
|
| 171 |
+
|
| 172 |
+
def predict(input, prefix = "P "):
|
| 173 |
+
print(input)
|
| 174 |
+
input_tok = tokenizer(prefix+input, return_tensors="pt")
|
| 175 |
+
print(input_tok)
|
| 176 |
+
outputs = model(**input_tok)
|
| 177 |
+
print(outputs)
|
| 178 |
+
labels = outputs.logits.sigmoid().round().int()
|
| 179 |
+
labels = labels.tolist()[0][3:-1]
|
| 180 |
+
print(labels)
|
| 181 |
+
labels_hebrew = [convert_binary_to_labels(x) for x in labels]
|
| 182 |
+
labels_arabic = [convert_nikkud_to_harakat(x) for x in labels_hebrew]
|
| 183 |
+
print(f"labels_hebrew: {labels_hebrew}")
|
| 184 |
+
print(f"labels_arabic: {labels_arabic}")
|
| 185 |
+
|
| 186 |
+
hebrew = [[x] for x in to_taatik(input)]
|
| 187 |
+
print(hebrew)
|
| 188 |
+
arabic = [[x] for x in input]
|
| 189 |
+
print(arabic)
|
| 190 |
+
|
| 191 |
+
print(f"len hebrew: {len(hebrew)}")
|
| 192 |
+
print(f"len arabic: {len(arabic)}")
|
| 193 |
+
print(f"len labels_hebrew: {len(labels_hebrew)}")
|
| 194 |
+
print(f"len labels_arabic: {len(labels_arabic)}")
|
| 195 |
+
print(f"labels: {labels}")
|
| 196 |
+
print(f"labels_hebrew: {labels_hebrew}")
|
| 197 |
+
print(f"labels_arabic: {labels_arabic}")
|
| 198 |
+
|
| 199 |
+
for i in range(len(hebrew)):
|
| 200 |
+
hebrew[i].extend([convert_label_names_to_chars(x) for x in labels_hebrew[i]])
|
| 201 |
+
arabic[i].extend([convert_label_names_to_chars(x) for x in labels_arabic[i]])
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
hebrew = ["".join(x) for x in hebrew]
|
| 205 |
+
arabic = ["".join(x) for x in arabic]
|
| 206 |
+
|
| 207 |
+
# loop over hebrew, if there is a ' in the second position move it to last position
|
| 208 |
+
for i in range(len(hebrew)):
|
| 209 |
+
if len(hebrew[i]) > 1 and hebrew[i][1] == "'":
|
| 210 |
+
hebrew[i] = hebrew[i][0] + hebrew[i][2:] + hebrew[i][1]
|
| 211 |
+
|
| 212 |
+
hebrew = "".join(hebrew)
|
| 213 |
+
arabic = "".join(arabic)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
return f"<p dir='rtl' style='font-size: 1.5em; font-family: Arial Unicode MS;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Noto;'>{arabic}</p>"
|
| 217 |
+
|
| 218 |
+
font = "Arial Unicode MS, Tahoma, sans-serif"
|
| 219 |
+
return f"<p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{arabic}</p>"
|
| 220 |
+
return f"<p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{arabic}</p>"
|
| 221 |
+
|
| 222 |
+
# return f"<p dir='rtl' style='font-size: 1.5em'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em'>{arabic}</p>"
|
| 223 |
+
|
| 224 |
+
font_url = "<link href='https://fonts.googleapis.com/css2?family=Heebo&display=swap' rel='stylesheet'>"
|
| 225 |
+
|
| 226 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Ammiya Diacritizer") as demo:
|
| 227 |
+
gr.HTML("<h2><span style='color: #2563eb'>Colloquial Arabic</span></h2> Diacritizer and Hebrew Transliterator" + font_url)
|
| 228 |
+
with gr.Row():
|
| 229 |
+
with gr.Column():
|
| 230 |
+
input = gr.Textbox(label="Input", placeholder="Enter Arabic text", lines=1)
|
| 231 |
+
gr.Examples(["بديش اروح معك"], input)
|
| 232 |
+
btn = gr.Button(label="Analyze")
|
| 233 |
+
with gr.Column():
|
| 234 |
+
with gr.Box():
|
| 235 |
+
html = gr.HTML()
|
| 236 |
+
btn.click(predict, inputs=[input], outputs=[html])
|
| 237 |
+
input.submit(predict, inputs = [input], outputs=[html])
|
| 238 |
+
|
| 239 |
+
demo.load()
|
| 240 |
+
demo.launch()
|
| 241 |
+
|