Spaces:
Runtime error
Runtime error
| from funasr_onnx import Fsmn_vad, Paraformer, CT_Transformer | |
| from transcribe import get_models, transcribe | |
| import soundfile | |
| import gradio as gr | |
| import pytube as pt | |
| import datetime | |
| import os | |
| asr_model, vad_model, punc_model = get_models("./models") | |
| def convert_to_wav(in_filename: str) -> str: | |
| """Convert the input audio file to a wave file""" | |
| out_filename = in_filename + ".wav" | |
| if '.mp3' in in_filename: | |
| _ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'") | |
| else: | |
| _ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}'") | |
| speech, _ = soundfile.read(out_filename) | |
| print(f"load speech shape {speech.shape}") | |
| return speech | |
| def file_transcribe(microphone, file_upload): | |
| warn_output = "" | |
| if (microphone is not None) and (file_upload is not None): | |
| warn_output = ( | |
| "WARNING: You've uploaded an audio file and used the microphone. " | |
| "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
| ) | |
| elif (microphone is None) and (file_upload is None): | |
| return "ERROR: You have to either use the microphone or upload an audio file" | |
| file = microphone if microphone is not None else file_upload | |
| speech = convert_to_wav(file) | |
| items = [] | |
| vad_model.vad_scorer.AllResetDetection() | |
| for item in transcribe(speech, asr_model, vad_model, punc_model): | |
| items.append(item) | |
| print(item) | |
| text = "\n".join(items) | |
| return warn_output + text | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def youtube_transcribe(yt_url): | |
| yt = pt.YouTube(yt_url) | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| stream = yt.streams.filter(only_audio=True)[0] | |
| filename = f"audio.mp3" | |
| stream.download(filename=filename) | |
| speech=convert_to_wav(filename) | |
| items = [] | |
| vad_model.vad_scorer.AllResetDetection() | |
| for item in transcribe(speech, asr_model, vad_model, punc_model): | |
| items.append(item) | |
| print(item) | |
| text = "\n".join(items) | |
| os.system(f"rm -rf audio.mp3 audio.mp3.wav") | |
| return html_embed_str, text | |
| def run(): | |
| gr.close_all() | |
| demo = gr.Blocks() | |
| mf_transcribe = gr.Interface( | |
| fn=file_transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
| gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
| ], | |
| outputs="text", | |
| layout="horizontal", | |
| theme="huggingface", | |
| title="ParaformerX: Copilot for Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| yt_transcribe = gr.Interface( | |
| fn=youtube_transcribe, | |
| inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
| outputs=["html", "text"], | |
| layout="horizontal", | |
| theme="huggingface", | |
| title="Demo: Transcribe YouTube", | |
| description=( | |
| "Transcribe long-form YouTube videos with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
| demo.launch(server_name="0.0.0.0", server_port=7860, enable_queue=True) | |
| if __name__ == "__main__": | |
| run() |