Spaces:
Runtime error
Runtime error
Commit
·
746bf5b
1
Parent(s):
d7ed89e
Add app and requirements
Browse files- app.py +205 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import uuid
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
# CLIP via Sentence-Transformers (text+image to same 512-dim space)
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
|
| 12 |
+
# Gemini (Google) client
|
| 13 |
+
from google import genai
|
| 14 |
+
|
| 15 |
+
# Qdrant client & helpers
|
| 16 |
+
from qdrant_client import QdrantClient
|
| 17 |
+
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
| 18 |
+
|
| 19 |
+
# -------------------------
|
| 20 |
+
# CONFIG (reads env vars)
|
| 21 |
+
# -------------------------
|
| 22 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") # set in Hugging Face Space secrets
|
| 23 |
+
QDRANT_URL = os.environ.get("QDRANT_URL") # set in Hugging Face Space secrets
|
| 24 |
+
QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") # set in Hugging Face Space secrets
|
| 25 |
+
|
| 26 |
+
# Local fallbacks (for local testing) - set them before running locally if needed:
|
| 27 |
+
# os.environ["GEMINI_API_KEY"]="..." ; os.environ["QDRANT_URL"]="..." ; os.environ["QDRANT_API_KEY"]="..."
|
| 28 |
+
|
| 29 |
+
# -------------------------
|
| 30 |
+
# Initialize clients/models
|
| 31 |
+
# -------------------------
|
| 32 |
+
print("Loading CLIP model (this may take 20-60s the first time)...")
|
| 33 |
+
MODEL_ID = "sentence-transformers/clip-ViT-B-32-multilingual-v1"
|
| 34 |
+
clip_model = SentenceTransformer(MODEL_ID) # model maps text & images to same vector space
|
| 35 |
+
|
| 36 |
+
# Gemini client (for tags/captions)
|
| 37 |
+
if GEMINI_API_KEY:
|
| 38 |
+
genai_client = genai.Client(api_key=GEMINI_API_KEY)
|
| 39 |
+
else:
|
| 40 |
+
genai_client = None
|
| 41 |
+
|
| 42 |
+
# Qdrant client
|
| 43 |
+
if not QDRANT_URL:
|
| 44 |
+
# If you prefer local Qdrant for dev: client = QdrantClient(":memory:") or local url
|
| 45 |
+
raise RuntimeError("Please set QDRANT_URL environment variable")
|
| 46 |
+
qclient = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
|
| 47 |
+
|
| 48 |
+
COLLECTION = "lost_found_items"
|
| 49 |
+
VECTOR_SIZE = 512
|
| 50 |
+
|
| 51 |
+
# Create collection if missing
|
| 52 |
+
if not qclient.collection_exists(COLLECTION):
|
| 53 |
+
qclient.create_collection(
|
| 54 |
+
collection_name=COLLECTION,
|
| 55 |
+
vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# -------------------------
|
| 59 |
+
# Helpers
|
| 60 |
+
# -------------------------
|
| 61 |
+
def embed_text(text: str):
|
| 62 |
+
vec = clip_model.encode(text, convert_to_numpy=True)
|
| 63 |
+
return vec
|
| 64 |
+
|
| 65 |
+
def embed_image_pil(pil_img: Image.Image):
|
| 66 |
+
# sentence-transformers supports directly encoding a PIL image for CLIP models
|
| 67 |
+
vec = clip_model.encode(pil_img, convert_to_numpy=True)
|
| 68 |
+
return vec
|
| 69 |
+
|
| 70 |
+
def gen_tags_from_image_file(local_path: str) -> str:
|
| 71 |
+
"""Upload image file to Gemini and ask for 4 short tags.
|
| 72 |
+
Returns the raw text response (expected comma-separated tags)."""
|
| 73 |
+
if genai_client is None:
|
| 74 |
+
return ""
|
| 75 |
+
# Upload file (Gemini Developer API supports client.files.upload)
|
| 76 |
+
file_obj = genai_client.files.upload(file=local_path)
|
| 77 |
+
# Ask Gemini: produce short tags only
|
| 78 |
+
prompt_text = (
|
| 79 |
+
"Give 4 short tags (comma-separated) describing this item in the image. "
|
| 80 |
+
"Tags should be short single words or two-word phrases (e.g. 'black backpack', 'water bottle'). "
|
| 81 |
+
"Respond only with tags, no extra explanation."
|
| 82 |
+
)
|
| 83 |
+
response = genai_client.models.generate_content(
|
| 84 |
+
model="gemini-2.5-flash",
|
| 85 |
+
contents=[prompt_text, file_obj],
|
| 86 |
+
)
|
| 87 |
+
return response.text.strip()
|
| 88 |
+
|
| 89 |
+
# -------------------------
|
| 90 |
+
# App logic: add item
|
| 91 |
+
# -------------------------
|
| 92 |
+
def add_item(mode: str, uploaded_image, text_description: str):
|
| 93 |
+
"""
|
| 94 |
+
mode: 'lost' or 'found'
|
| 95 |
+
uploaded_image: PIL image or None
|
| 96 |
+
text_description: str
|
| 97 |
+
"""
|
| 98 |
+
item_id = str(uuid.uuid4())
|
| 99 |
+
payload = {"mode": mode, "text": text_description}
|
| 100 |
+
|
| 101 |
+
if uploaded_image is not None:
|
| 102 |
+
# Save image to temp file (so we can upload to Gemini)
|
| 103 |
+
tmp_path = f"/tmp/{item_id}.png"
|
| 104 |
+
uploaded_image.save(tmp_path)
|
| 105 |
+
# embed image
|
| 106 |
+
vec = embed_image_pil(uploaded_image).tolist()
|
| 107 |
+
payload["has_image"] = True
|
| 108 |
+
# optional: get tags from Gemini (if available)
|
| 109 |
+
try:
|
| 110 |
+
tags = gen_tags_from_image_file(tmp_path)
|
| 111 |
+
except Exception as e:
|
| 112 |
+
tags = ""
|
| 113 |
+
payload["tags"] = tags
|
| 114 |
+
# store image bytes (tiny) so we can show result in the UI (base64)
|
| 115 |
+
with open(tmp_path, "rb") as f:
|
| 116 |
+
b64 = f.read()
|
| 117 |
+
payload["image_b64"] = True # flag (we will return/show image via Gradio from file bytes)
|
| 118 |
+
else:
|
| 119 |
+
# only text provided
|
| 120 |
+
vec = embed_text(text_description).tolist()
|
| 121 |
+
payload["has_image"] = False
|
| 122 |
+
# ask Gemini to suggest tags from text
|
| 123 |
+
if genai_client:
|
| 124 |
+
try:
|
| 125 |
+
resp = genai_client.models.generate_content(
|
| 126 |
+
model="gemini-2.5-flash",
|
| 127 |
+
contents=f"Give 4 short, comma-separated tags for this item described as: {text_description}. Reply only with tags."
|
| 128 |
+
)
|
| 129 |
+
payload["tags"] = resp.text.strip()
|
| 130 |
+
except Exception:
|
| 131 |
+
payload["tags"] = ""
|
| 132 |
+
else:
|
| 133 |
+
payload["tags"] = ""
|
| 134 |
+
|
| 135 |
+
# Upsert into Qdrant
|
| 136 |
+
point = PointStruct(id=item_id, vector=vec, payload=payload)
|
| 137 |
+
qclient.upsert(collection_name=COLLECTION, points=[point], wait=True)
|
| 138 |
+
|
| 139 |
+
return f"Saved item id: {item_id}\nTags: {payload.get('tags','')}"
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# -------------------------
|
| 143 |
+
# App logic: search
|
| 144 |
+
# -------------------------
|
| 145 |
+
def search_items(query_image, query_text, limit: int = 5):
|
| 146 |
+
# produce query embedding
|
| 147 |
+
if query_image is not None:
|
| 148 |
+
qvec = embed_image_pil(query_image).tolist()
|
| 149 |
+
q_type = "image"
|
| 150 |
+
else:
|
| 151 |
+
if (not query_text) or (len(query_text.strip()) == 0):
|
| 152 |
+
return "Please provide a query image or some query text."
|
| 153 |
+
qvec = embed_text(query_text).tolist()
|
| 154 |
+
q_type = "text"
|
| 155 |
+
|
| 156 |
+
hits = qclient.search(collection_name=COLLECTION, query_vector=qvec, limit=limit)
|
| 157 |
+
|
| 158 |
+
# Format output (list)
|
| 159 |
+
results = []
|
| 160 |
+
for h in hits:
|
| 161 |
+
payload = h.payload or {}
|
| 162 |
+
score = getattr(h, "score", None)
|
| 163 |
+
results.append(
|
| 164 |
+
{
|
| 165 |
+
"id": h.id,
|
| 166 |
+
"score": float(score) if score is not None else None,
|
| 167 |
+
"mode": payload.get("mode", ""),
|
| 168 |
+
"text": payload.get("text", ""),
|
| 169 |
+
"tags": payload.get("tags", ""),
|
| 170 |
+
"has_image": payload.get("has_image", False),
|
| 171 |
+
}
|
| 172 |
+
)
|
| 173 |
+
# Return a simple list for Gradio to show
|
| 174 |
+
if not results:
|
| 175 |
+
return "No results."
|
| 176 |
+
# Convert to text for display
|
| 177 |
+
out_lines = []
|
| 178 |
+
for r in results:
|
| 179 |
+
out_lines.append(f"id:{r['id']} score:{r['score']:.4f} mode:{r['mode']} tags:{r['tags']} text:{r['text']}")
|
| 180 |
+
return "\n\n".join(out_lines)
|
| 181 |
+
|
| 182 |
+
# -------------------------
|
| 183 |
+
# Gradio UI
|
| 184 |
+
# -------------------------
|
| 185 |
+
with gr.Blocks(title="Lost & Found — Simple Helper") as demo:
|
| 186 |
+
gr.Markdown("## Lost & Found Helper (image/text search) — upload items, then search by image or text.")
|
| 187 |
+
with gr.Row():
|
| 188 |
+
with gr.Column():
|
| 189 |
+
mode = gr.Radio(choices=["lost", "found"], value="lost", label="Add as")
|
| 190 |
+
upload_img = gr.Image(type="pil", label="Item photo (optional)")
|
| 191 |
+
text_desc = gr.Textbox(lines=2, placeholder="Short description (e.g. 'black backpack with blue zipper')", label="Description (optional)")
|
| 192 |
+
add_btn = gr.Button("Add item")
|
| 193 |
+
add_out = gr.Textbox(label="Add result", interactive=False)
|
| 194 |
+
with gr.Column():
|
| 195 |
+
gr.Markdown("### Search")
|
| 196 |
+
query_img = gr.Image(type="pil", label="Search by image (optional)")
|
| 197 |
+
query_text = gr.Textbox(lines=2, label="Search by text (optional)")
|
| 198 |
+
search_btn = gr.Button("Search")
|
| 199 |
+
search_out = gr.Textbox(label="Search results", interactive=False)
|
| 200 |
+
|
| 201 |
+
add_btn.click(add_item, inputs=[mode, upload_img, text_desc], outputs=[add_out])
|
| 202 |
+
search_btn.click(search_items, inputs=[query_img, query_text], outputs=[search_out])
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
sentence-transformers
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
pillow
|
| 6 |
+
google-genai
|
| 7 |
+
qdrant-client
|
| 8 |
+
numpy
|