Spaces:
Runtime error
Runtime error
fix
Browse files- app.py +83 -124
- utils/generator.py +171 -0
app.py
CHANGED
|
@@ -1,124 +1,76 @@
|
|
| 1 |
-
import random
|
| 2 |
-
import re
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
-
from transformers import pipeline, set_seed
|
| 8 |
|
|
|
|
|
|
|
| 9 |
from utils.image2text import git_image2text, w14_image2text, clip_image2text
|
| 10 |
-
from utils.singleton import Singleton
|
| 11 |
from utils.translate import en2zh as translate_en2zh
|
| 12 |
from utils.translate import zh2en as translate_zh2en
|
| 13 |
-
from utils.exif import get_image_info
|
| 14 |
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
if item in ('text_pipe',):
|
| 32 |
-
self.text_pipe = self.load_text_generation_pipeline()
|
| 33 |
-
|
| 34 |
-
return getattr(self, item)
|
| 35 |
-
|
| 36 |
-
@classmethod
|
| 37 |
-
def load_text_generation_pipeline(cls):
|
| 38 |
-
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
| 39 |
-
|
| 40 |
-
@classmethod
|
| 41 |
-
def load_prompter_model(cls):
|
| 42 |
-
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
| 43 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 44 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 45 |
-
tokenizer.padding_side = "left"
|
| 46 |
-
return prompter_model, tokenizer
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
models = Models.instance()
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
|
| 53 |
-
input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
| 54 |
-
eos_id = models.prompter_tokenizer.eos_token_id
|
| 55 |
-
outputs = models.prompter_model.generate(
|
| 56 |
-
input_ids,
|
| 57 |
-
do_sample=False,
|
| 58 |
-
max_new_tokens=max_new_tokens,
|
| 59 |
-
num_beams=num_beams,
|
| 60 |
-
num_return_sequences=num_return_sequences,
|
| 61 |
-
eos_token_id=eos_id,
|
| 62 |
-
pad_token_id=eos_id,
|
| 63 |
-
length_penalty=length_penalty
|
| 64 |
)
|
| 65 |
-
|
| 66 |
-
result = []
|
| 67 |
-
for output_text in output_texts:
|
| 68 |
-
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
| 69 |
-
|
| 70 |
-
return "\n".join(result)
|
| 71 |
|
| 72 |
|
| 73 |
def image_generate_prompter(
|
| 74 |
bclip_text,
|
| 75 |
w14_text,
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
):
|
| 81 |
-
result =
|
| 82 |
-
bclip_text,
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
result = ""
|
| 96 |
-
for _ in range(6):
|
| 97 |
-
sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
|
| 98 |
-
list = []
|
| 99 |
-
for sequence in sequences:
|
| 100 |
-
line = sequence['generated_text'].strip()
|
| 101 |
-
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
| 102 |
-
(':', '-', '—')) is False:
|
| 103 |
-
list.append(line)
|
| 104 |
-
|
| 105 |
-
result = "\n".join(list)
|
| 106 |
-
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
| 107 |
-
result = result.replace('<', '').replace('>', '')
|
| 108 |
-
if result != '':
|
| 109 |
-
break
|
| 110 |
-
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
| 111 |
|
| 112 |
|
| 113 |
with gr.Blocks(title="Prompt生成器") as block:
|
| 114 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
with gr.Tab('从图片中生成'):
|
| 117 |
with gr.Row():
|
| 118 |
input_image = gr.Image(type='pil')
|
| 119 |
exif_info = gr.HTML()
|
| 120 |
-
output_blip_or_clip = gr.Textbox(label='生成的 Prompt')
|
| 121 |
-
output_w14 = gr.Textbox(label='W14的 Prompt')
|
| 122 |
|
| 123 |
with gr.Accordion('W14', open=False):
|
| 124 |
w14_raw_output = gr.Textbox(label="Output (raw string)")
|
|
@@ -126,38 +78,35 @@ with gr.Blocks(title="Prompt生成器") as block:
|
|
| 126 |
w14_rating_output = gr.Label(label="Rating")
|
| 127 |
w14_characters_output = gr.Label(label="Output (characters)")
|
| 128 |
w14_tags_output = gr.Label(label="Output (tags)")
|
| 129 |
-
|
|
|
|
| 130 |
with gr.Row():
|
| 131 |
img_exif_btn = gr.Button('EXIF')
|
| 132 |
img_blip_btn = gr.Button('BLIP图片转描述')
|
| 133 |
img_w14_btn = gr.Button('W14图片转描述')
|
| 134 |
img_clip_btn = gr.Button('CLIP图片转描述')
|
| 135 |
-
img_prompter_btn = gr.Button('
|
| 136 |
-
|
| 137 |
-
with gr.Tab('文本生成'):
|
| 138 |
-
with gr.Row():
|
| 139 |
-
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
| 140 |
-
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
| 141 |
|
| 142 |
-
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
|
| 143 |
-
|
| 144 |
-
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
|
| 145 |
-
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
|
| 146 |
-
with gr.Row():
|
| 147 |
-
translate_btn = gr.Button('翻译')
|
| 148 |
-
generate_prompter_btn = gr.Button('SD优化')
|
| 149 |
-
gpt_btn = gr.Button('瞎编')
|
| 150 |
with gr.Tab('参数设置'):
|
| 151 |
-
with gr.Accordion('
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
with gr.Accordion('BLIP参数', open=True):
|
| 157 |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
|
| 158 |
with gr.Accordion('CLIP参数', open=True):
|
| 159 |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
|
| 160 |
-
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', )
|
| 161 |
with gr.Accordion('WD14参数', open=True):
|
| 162 |
image2text_model = gr.Radio(
|
| 163 |
[
|
|
@@ -185,22 +134,32 @@ with gr.Blocks(title="Prompt生成器") as block:
|
|
| 185 |
)
|
| 186 |
img_prompter_btn.click(
|
| 187 |
fn=image_generate_prompter,
|
| 188 |
-
inputs=[
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
)
|
| 191 |
translate_btn.click(
|
| 192 |
fn=translate_zh2en,
|
| 193 |
inputs=input_text,
|
| 194 |
outputs=translate_output
|
| 195 |
)
|
|
|
|
| 196 |
generate_prompter_btn.click(
|
| 197 |
-
fn=
|
| 198 |
-
inputs=[
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
| 204 |
outputs=[output, output_zh]
|
| 205 |
)
|
| 206 |
img_w14_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
from utils.exif import get_image_info
|
| 5 |
+
from utils.generator import generate_prompt
|
| 6 |
from utils.image2text import git_image2text, w14_image2text, clip_image2text
|
|
|
|
| 7 |
from utils.translate import en2zh as translate_en2zh
|
| 8 |
from utils.translate import zh2en as translate_zh2en
|
|
|
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
|
| 13 |
+
def text_generate_prompter(
|
| 14 |
+
plain_text,
|
| 15 |
+
model_name='microsoft',
|
| 16 |
+
prompt_min_length=60,
|
| 17 |
+
prompt_max_length=75,
|
| 18 |
+
prompt_num_return_sequences=8,
|
| 19 |
+
):
|
| 20 |
+
result = generate_prompt(
|
| 21 |
+
plain_text=plain_text,
|
| 22 |
+
model_name=model_name,
|
| 23 |
+
min_length=prompt_min_length,
|
| 24 |
+
max_length=prompt_max_length,
|
| 25 |
+
num_return_sequences=prompt_num_return_sequences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
+
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def image_generate_prompter(
|
| 31 |
bclip_text,
|
| 32 |
w14_text,
|
| 33 |
+
model_name='microsoft',
|
| 34 |
+
prompt_min_length=60,
|
| 35 |
+
prompt_max_length=75,
|
| 36 |
+
prompt_num_return_sequences=8,
|
| 37 |
+
|
| 38 |
):
|
| 39 |
+
result = generate_prompt(
|
| 40 |
+
plain_text=bclip_text,
|
| 41 |
+
model_name=model_name,
|
| 42 |
+
min_length=prompt_min_length,
|
| 43 |
+
max_length=prompt_max_length,
|
| 44 |
+
num_return_sequences=prompt_num_return_sequences
|
| 45 |
)
|
| 46 |
+
prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0]
|
| 47 |
+
prompter_zh_list = [
|
| 48 |
+
"{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in
|
| 49 |
+
result.split("\n") if len(line) > 0
|
| 50 |
+
]
|
| 51 |
+
return "\n".join(prompter_list), "\n".join(prompter_zh_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
with gr.Blocks(title="Prompt生成器") as block:
|
| 55 |
with gr.Column():
|
| 56 |
+
with gr.Tab('文本生成'):
|
| 57 |
+
with gr.Row():
|
| 58 |
+
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
| 59 |
+
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
| 60 |
+
|
| 61 |
+
output = gr.Textbox(lines=6, label='优化的 Prompt')
|
| 62 |
+
output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
|
| 63 |
+
with gr.Row():
|
| 64 |
+
translate_btn = gr.Button('翻译')
|
| 65 |
+
|
| 66 |
+
generate_prompter_btn = gr.Button('优化Prompt')
|
| 67 |
|
| 68 |
with gr.Tab('从图片中生成'):
|
| 69 |
with gr.Row():
|
| 70 |
input_image = gr.Image(type='pil')
|
| 71 |
exif_info = gr.HTML()
|
| 72 |
+
output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4)
|
| 73 |
+
output_w14 = gr.Textbox(label='W14的 Prompt', lines=4)
|
| 74 |
|
| 75 |
with gr.Accordion('W14', open=False):
|
| 76 |
w14_raw_output = gr.Textbox(label="Output (raw string)")
|
|
|
|
| 78 |
w14_rating_output = gr.Label(label="Rating")
|
| 79 |
w14_characters_output = gr.Label(label="Output (characters)")
|
| 80 |
w14_tags_output = gr.Label(label="Output (tags)")
|
| 81 |
+
output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt')
|
| 82 |
+
output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
|
| 83 |
with gr.Row():
|
| 84 |
img_exif_btn = gr.Button('EXIF')
|
| 85 |
img_blip_btn = gr.Button('BLIP图片转描述')
|
| 86 |
img_w14_btn = gr.Button('W14图片转描述')
|
| 87 |
img_clip_btn = gr.Button('CLIP图片转描述')
|
| 88 |
+
img_prompter_btn = gr.Button('优化Prompt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
with gr.Tab('参数设置'):
|
| 91 |
+
with gr.Accordion('Prompt优化参数', open=True):
|
| 92 |
+
prompt_mode_name = gr.Radio(
|
| 93 |
+
[
|
| 94 |
+
'microsoft',
|
| 95 |
+
'mj',
|
| 96 |
+
'gpt2_650k',
|
| 97 |
+
],
|
| 98 |
+
value='gpt2_650k',
|
| 99 |
+
label='model_name'
|
| 100 |
+
)
|
| 101 |
+
prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1)
|
| 102 |
+
prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1)
|
| 103 |
+
prompt_num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1)
|
| 104 |
+
|
| 105 |
with gr.Accordion('BLIP参数', open=True):
|
| 106 |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
|
| 107 |
with gr.Accordion('CLIP参数', open=True):
|
| 108 |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
|
| 109 |
+
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name')
|
| 110 |
with gr.Accordion('WD14参数', open=True):
|
| 111 |
image2text_model = gr.Radio(
|
| 112 |
[
|
|
|
|
| 134 |
)
|
| 135 |
img_prompter_btn.click(
|
| 136 |
fn=image_generate_prompter,
|
| 137 |
+
inputs=[
|
| 138 |
+
output_blip_or_clip,
|
| 139 |
+
output_w14,
|
| 140 |
+
prompt_mode_name,
|
| 141 |
+
prompt_min_length,
|
| 142 |
+
prompt_max_length,
|
| 143 |
+
prompt_num_return_sequences,
|
| 144 |
+
|
| 145 |
+
],
|
| 146 |
+
outputs=[output_img_prompter, output_img_prompter_zh]
|
| 147 |
)
|
| 148 |
translate_btn.click(
|
| 149 |
fn=translate_zh2en,
|
| 150 |
inputs=input_text,
|
| 151 |
outputs=translate_output
|
| 152 |
)
|
| 153 |
+
|
| 154 |
generate_prompter_btn.click(
|
| 155 |
+
fn=text_generate_prompter,
|
| 156 |
+
inputs=[
|
| 157 |
+
translate_output,
|
| 158 |
+
prompt_mode_name,
|
| 159 |
+
prompt_min_length,
|
| 160 |
+
prompt_max_length,
|
| 161 |
+
prompt_num_return_sequences,
|
| 162 |
+
],
|
| 163 |
outputs=[output, output_zh]
|
| 164 |
)
|
| 165 |
img_w14_btn.click(
|
utils/generator.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from transformers import pipeline, set_seed
|
| 4 |
+
import random
|
| 5 |
+
import re
|
| 6 |
+
from .singleton import Singleton
|
| 7 |
+
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@Singleton
|
| 12 |
+
class Models(object):
|
| 13 |
+
|
| 14 |
+
def __getattr__(self, item):
|
| 15 |
+
if item in self.__dict__:
|
| 16 |
+
return getattr(self, item)
|
| 17 |
+
|
| 18 |
+
if item in ('microsoft_model', 'microsoft_tokenizer'):
|
| 19 |
+
self.microsoft_model, self.microsoft_tokenizer = self.load_microsoft_model()
|
| 20 |
+
|
| 21 |
+
if item in ('mj_pipe',):
|
| 22 |
+
self.mj_pipe = self.load_mj_pipe()
|
| 23 |
+
|
| 24 |
+
if item in ('gpt2_650k_pipe',):
|
| 25 |
+
self.gpt2_650k_pipe = self.load_gpt2_650k_pipe()
|
| 26 |
+
|
| 27 |
+
return getattr(self, item)
|
| 28 |
+
|
| 29 |
+
@classmethod
|
| 30 |
+
def load_gpt2_650k_pipe(cls):
|
| 31 |
+
|
| 32 |
+
return pipeline('text-generation', model='Ar4ikov/gpt2-650k-stable-diffusion-prompt-generator')
|
| 33 |
+
|
| 34 |
+
@classmethod
|
| 35 |
+
def load_mj_pipe(cls):
|
| 36 |
+
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
| 37 |
+
|
| 38 |
+
@classmethod
|
| 39 |
+
def load_microsoft_model(cls):
|
| 40 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 42 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 43 |
+
tokenizer.padding_side = "left"
|
| 44 |
+
return prompter_model, tokenizer
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
models = Models.instance()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def rand_length(min_length: int = 60, max_length: int = 90) -> int:
|
| 51 |
+
if min_length > max_length:
|
| 52 |
+
return max_length
|
| 53 |
+
|
| 54 |
+
return random.randint(min_length, max_length)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def generate_prompt(
|
| 58 |
+
plain_text,
|
| 59 |
+
min_length=60,
|
| 60 |
+
max_length=90,
|
| 61 |
+
num_return_sequences=8,
|
| 62 |
+
model_name='microsoft',
|
| 63 |
+
):
|
| 64 |
+
if model_name == 'gpt2_650k':
|
| 65 |
+
return generate_prompt_gpt2_650k(
|
| 66 |
+
prompt=plain_text,
|
| 67 |
+
min_length=min_length,
|
| 68 |
+
max_length=max_length,
|
| 69 |
+
num_return_sequences=num_return_sequences,
|
| 70 |
+
)
|
| 71 |
+
elif model_name == 'mj':
|
| 72 |
+
return generate_prompt_mj(
|
| 73 |
+
text_in_english=plain_text,
|
| 74 |
+
num_return_sequences=num_return_sequences,
|
| 75 |
+
min_length=min_length,
|
| 76 |
+
max_length=max_length,
|
| 77 |
+
)
|
| 78 |
+
else:
|
| 79 |
+
return generate_prompt_microsoft(
|
| 80 |
+
plain_text=plain_text,
|
| 81 |
+
min_length=min_length,
|
| 82 |
+
max_length=max_length,
|
| 83 |
+
num_return_sequences=num_return_sequences,
|
| 84 |
+
num_beams=num_return_sequences,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def generate_prompt_microsoft(
|
| 89 |
+
plain_text,
|
| 90 |
+
min_length=60,
|
| 91 |
+
max_length=90,
|
| 92 |
+
num_beams=8,
|
| 93 |
+
num_return_sequences=8,
|
| 94 |
+
length_penalty=-1.0
|
| 95 |
+
) -> str:
|
| 96 |
+
input_ids = models.microsoft_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
| 97 |
+
eos_id = models.microsoft_tokenizer.eos_token_id
|
| 98 |
+
|
| 99 |
+
outputs = models.microsoft_model.generate(
|
| 100 |
+
input_ids,
|
| 101 |
+
do_sample=False,
|
| 102 |
+
max_new_tokens=rand_length(min_length, max_length),
|
| 103 |
+
num_beams=num_beams,
|
| 104 |
+
num_return_sequences=num_return_sequences,
|
| 105 |
+
eos_token_id=eos_id,
|
| 106 |
+
pad_token_id=eos_id,
|
| 107 |
+
length_penalty=length_penalty
|
| 108 |
+
)
|
| 109 |
+
output_texts = models.microsoft_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 110 |
+
result = []
|
| 111 |
+
for output_text in output_texts:
|
| 112 |
+
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
| 113 |
+
|
| 114 |
+
return "\n".join(result)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def generate_prompt_gpt2_650k(prompt: str, min_length=60, max_length: int = 255, num_return_sequences: int = 8) -> str:
|
| 118 |
+
def get_valid_prompt(text: str) -> str:
|
| 119 |
+
dot_split = text.split('.')[0]
|
| 120 |
+
n_split = text.split('\n')[0]
|
| 121 |
+
|
| 122 |
+
return {
|
| 123 |
+
len(dot_split) < len(n_split): dot_split,
|
| 124 |
+
len(n_split) > len(dot_split): n_split,
|
| 125 |
+
len(n_split) == len(dot_split): dot_split
|
| 126 |
+
}[True]
|
| 127 |
+
|
| 128 |
+
output = []
|
| 129 |
+
for _ in range(6):
|
| 130 |
+
|
| 131 |
+
output += [
|
| 132 |
+
get_valid_prompt(result['generated_text']) for result in
|
| 133 |
+
models.gpt2_650k_pipe(
|
| 134 |
+
prompt,
|
| 135 |
+
max_new_tokens=rand_length(min_length, max_length),
|
| 136 |
+
num_return_sequences=num_return_sequences
|
| 137 |
+
)
|
| 138 |
+
]
|
| 139 |
+
output = list(set(output))
|
| 140 |
+
if len(output) >= num_return_sequences:
|
| 141 |
+
break
|
| 142 |
+
|
| 143 |
+
# valid_prompt = get_valid_prompt(models.gpt2_650k_pipe(prompt, max_length=max_length)[0]['generated_text'])
|
| 144 |
+
return "\n".join([o.strip() for o in output])
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def generate_prompt_mj(text_in_english: str, num_return_sequences: int = 8, min_length=60, max_length=90) -> str:
|
| 148 |
+
seed = random.randint(100, 1000000)
|
| 149 |
+
set_seed(seed)
|
| 150 |
+
|
| 151 |
+
result = ""
|
| 152 |
+
for _ in range(6):
|
| 153 |
+
sequences = models.mj_pipe(
|
| 154 |
+
text_in_english,
|
| 155 |
+
max_new_tokens=rand_length(min_length, max_length),
|
| 156 |
+
num_return_sequences=num_return_sequences
|
| 157 |
+
)
|
| 158 |
+
list = []
|
| 159 |
+
for sequence in sequences:
|
| 160 |
+
line = sequence['generated_text'].strip()
|
| 161 |
+
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
| 162 |
+
(':', '-', '—')) is False:
|
| 163 |
+
list.append(line)
|
| 164 |
+
|
| 165 |
+
result = "\n".join(list)
|
| 166 |
+
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
| 167 |
+
result = result.replace('<', '').replace('>', '')
|
| 168 |
+
if result != '':
|
| 169 |
+
break
|
| 170 |
+
return result
|
| 171 |
+
# return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|