hsshin98
commited on
Commit
·
b624e95
1
Parent(s):
d617811
readme
Browse files
README.md
CHANGED
|
@@ -1,48 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-

|
| 11 |
-
We introduce cost aggregation to open-vocabulary semantic segmentation, which jointly aggregates both image and text modalities within the matching cost.
|
| 12 |
-
|
| 13 |
-
## Installation
|
| 14 |
-
Install required packages.
|
| 15 |
-
|
| 16 |
-
```bash
|
| 17 |
-
conda create --name catseg python=3.8
|
| 18 |
-
conda activate catseg
|
| 19 |
-
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
|
| 20 |
-
pip install -r requirements.txt
|
| 21 |
-
```
|
| 22 |
-
|
| 23 |
-
## Data Preparation
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
## Training
|
| 27 |
-
### Preparation
|
| 28 |
-
you have to blah
|
| 29 |
-
### Training script
|
| 30 |
-
```bash
|
| 31 |
-
python train.py --config configs/eval/{a847 | pc459 | a150 | pc59 | pas20 | pas20b}.yaml
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
## Evaluation
|
| 35 |
-
```bash
|
| 36 |
-
python eval.py --config configs/eval/{a847 | pc459 | a150 | pc59 | pas20 | pas20b}.yaml
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
## Citing CAT-Seg🐱 :pray:
|
| 40 |
-
|
| 41 |
-
```BibTeX
|
| 42 |
-
@article{liang2022open,
|
| 43 |
-
title={Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP},
|
| 44 |
-
author={Liang, Feng and Wu, Bichen and Dai, Xiaoliang and Li, Kunpeng and Zhao, Yinan and Zhang, Hang and Zhang, Peizhao and Vajda, Peter and Marculescu, Diana},
|
| 45 |
-
journal={arXiv preprint arXiv:2210.04150},
|
| 46 |
-
year={2022}
|
| 47 |
-
}
|
| 48 |
-
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CAT-Seg Demo
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: orange
|
| 6 |
+
sdk: gradio
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: false
|
| 9 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|