Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import gradio as gr | |
| from openai import OpenAI | |
| client = OpenAI( | |
| base_url="https://integrate.api.nvidia.com/v1", | |
| api_key="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" | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| completion = client.chat.completions.create( | |
| model="nvidia/nemotron-4-340b-instruct", | |
| messages=messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| stream=True, | |
| ) | |
| for chunk in completion: | |
| if chunk.choices[0].delta.content is not None: | |
| token = chunk.choices[0].delta.content | |
| response += token | |
| yield response | |
| demo = gr.ChatInterface( | |
| respond, | |
| title="Friendly Chatbot", | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |