Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 2 files
Browse files- audio_process.py +93 -0
- web_demo.py +267 -0
    	
        audio_process.py
    ADDED
    
    | @@ -0,0 +1,93 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import librosa
         | 
| 3 | 
            +
            import soundfile as sf
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            from pathlib import Path
         | 
| 6 | 
            +
            import io
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # Split audio stream at silence points to prevent playback stuttering issues
         | 
| 9 | 
            +
            # caused by AAC encoder frame padding when streaming audio through Gradio audio components.
         | 
| 10 | 
            +
            class AudioStreamProcessor:
         | 
| 11 | 
            +
                def __init__(self, sr=22050, min_silence_duration=0.1, threshold_db=-40):
         | 
| 12 | 
            +
                    self.sr = sr
         | 
| 13 | 
            +
                    self.min_silence_duration = min_silence_duration
         | 
| 14 | 
            +
                    self.threshold_db = threshold_db
         | 
| 15 | 
            +
                    self.buffer = np.array([])
         | 
| 16 | 
            +
              
         | 
| 17 | 
            +
                
         | 
| 18 | 
            +
                def process(self, audio_data, last=False):
         | 
| 19 | 
            +
                    """
         | 
| 20 | 
            +
                    Add audio data and process it
         | 
| 21 | 
            +
                    params:
         | 
| 22 | 
            +
                        audio_data: audio data in numpy array
         | 
| 23 | 
            +
                        last: whether this is the last chunk of data
         | 
| 24 | 
            +
                    returns:
         | 
| 25 | 
            +
                        Processed audio data, returns None if no split point is found
         | 
| 26 | 
            +
                    """
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                    # Add new data to buffer
         | 
| 29 | 
            +
                    self.buffer = np.concatenate([self.buffer, audio_data]) if len(self.buffer) > 0 else audio_data
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    if last:
         | 
| 32 | 
            +
                        result = self.buffer
         | 
| 33 | 
            +
                        self.buffer = np.array([])
         | 
| 34 | 
            +
                        return self._to_wav_bytes(result)
         | 
| 35 | 
            +
                        
         | 
| 36 | 
            +
                    # Find silence boundary
         | 
| 37 | 
            +
                    split_point = self._find_silence_boundary(self.buffer)
         | 
| 38 | 
            +
                    
         | 
| 39 | 
            +
                    if split_point is not None:
         | 
| 40 | 
            +
                        # Modified: Extend split point to the end of silence
         | 
| 41 | 
            +
                        silence_end = self._find_silence_end(split_point)
         | 
| 42 | 
            +
                        result = self.buffer[:silence_end]
         | 
| 43 | 
            +
                        self.buffer = self.buffer[silence_end:]
         | 
| 44 | 
            +
                        return self._to_wav_bytes(result)
         | 
| 45 | 
            +
                        
         | 
| 46 | 
            +
                    return None
         | 
| 47 | 
            +
                    
         | 
| 48 | 
            +
                def _find_silence_boundary(self, audio):
         | 
| 49 | 
            +
                    """
         | 
| 50 | 
            +
                    Find the starting point of silence boundary in audio
         | 
| 51 | 
            +
                    """
         | 
| 52 | 
            +
                    # Convert audio to decibels
         | 
| 53 | 
            +
                    db = librosa.amplitude_to_db(np.abs(audio), ref=np.max)
         | 
| 54 | 
            +
                    
         | 
| 55 | 
            +
                    # Find points below threshold
         | 
| 56 | 
            +
                    silence_points = np.where(db < self.threshold_db)[0]
         | 
| 57 | 
            +
                    
         | 
| 58 | 
            +
                    if len(silence_points) == 0:
         | 
| 59 | 
            +
                        return None
         | 
| 60 | 
            +
                        
         | 
| 61 | 
            +
                    # Calculate minimum silence samples
         | 
| 62 | 
            +
                    min_silence_samples = int(self.min_silence_duration * self.sr)
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    # Search backwards for continuous silence segment starting point
         | 
| 65 | 
            +
                    for i in range(len(silence_points) - min_silence_samples, -1, -1):
         | 
| 66 | 
            +
                        if i < 0:
         | 
| 67 | 
            +
                            break
         | 
| 68 | 
            +
                        if np.all(np.diff(silence_points[i:i+min_silence_samples]) == 1):
         | 
| 69 | 
            +
                            return silence_points[i]
         | 
| 70 | 
            +
                            
         | 
| 71 | 
            +
                    return None
         | 
| 72 | 
            +
                    
         | 
| 73 | 
            +
                def _find_silence_end(self, start_point):
         | 
| 74 | 
            +
                    """
         | 
| 75 | 
            +
                    Find the end point of silence segment
         | 
| 76 | 
            +
                    """
         | 
| 77 | 
            +
                    db = librosa.amplitude_to_db(np.abs(self.buffer[start_point:]), ref=np.max)
         | 
| 78 | 
            +
                    silence_points = np.where(db >= self.threshold_db)[0]
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    if len(silence_points) == 0:
         | 
| 81 | 
            +
                        return len(self.buffer)
         | 
| 82 | 
            +
                        
         | 
| 83 | 
            +
                    return start_point + silence_points[0]
         | 
| 84 | 
            +
                  
         | 
| 85 | 
            +
                def _to_wav_bytes(self, audio_data):
         | 
| 86 | 
            +
                    """
         | 
| 87 | 
            +
                    trans_to_wav_bytes
         | 
| 88 | 
            +
                    """
         | 
| 89 | 
            +
                    wav_buffer = io.BytesIO()
         | 
| 90 | 
            +
                    sf.write(wav_buffer, audio_data, self.sr, format='WAV')
         | 
| 91 | 
            +
                    return wav_buffer.getvalue()
         | 
| 92 | 
            +
                  
         | 
| 93 | 
            +
                
         | 
    	
        web_demo.py
    ADDED
    
    | @@ -0,0 +1,267 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import json
         | 
| 2 | 
            +
            import os.path
         | 
| 3 | 
            +
            import tempfile
         | 
| 4 | 
            +
            import sys
         | 
| 5 | 
            +
            import re
         | 
| 6 | 
            +
            import uuid
         | 
| 7 | 
            +
            import requests
         | 
| 8 | 
            +
            from argparse import ArgumentParser
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torchaudio
         | 
| 11 | 
            +
            from transformers import WhisperFeatureExtractor, AutoTokenizer
         | 
| 12 | 
            +
            from speech_tokenizer.modeling_whisper import WhisperVQEncoder
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            sys.path.insert(0, "./cosyvoice")
         | 
| 16 | 
            +
            sys.path.insert(0, "./third_party/Matcha-TTS")
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from speech_tokenizer.utils import extract_speech_token
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            import gradio as gr
         | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from flow_inference import AudioDecoder
         | 
| 26 | 
            +
            from audio_process import AudioStreamProcessor
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            if __name__ == "__main__":
         | 
| 29 | 
            +
                parser = ArgumentParser()
         | 
| 30 | 
            +
                parser.add_argument("--host", type=str, default="0.0.0.0")
         | 
| 31 | 
            +
                parser.add_argument("--port", type=int, default="8888")
         | 
| 32 | 
            +
                parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
         | 
| 33 | 
            +
                parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
         | 
| 34 | 
            +
                parser.add_argument("--tokenizer-path", type= str, default="THUDM/glm-4-voice-tokenizer")
         | 
| 35 | 
            +
                args = parser.parse_args()
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                flow_config = os.path.join(args.flow_path, "config.yaml")
         | 
| 38 | 
            +
                flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
         | 
| 39 | 
            +
                hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
         | 
| 40 | 
            +
                glm_tokenizer = None
         | 
| 41 | 
            +
                device = "cuda"
         | 
| 42 | 
            +
                audio_decoder: AudioDecoder = None
         | 
| 43 | 
            +
                whisper_model, feature_extractor = None, None
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
                def initialize_fn():
         | 
| 47 | 
            +
                    global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
         | 
| 48 | 
            +
                    if audio_decoder is not None:
         | 
| 49 | 
            +
                        return
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    # GLM
         | 
| 52 | 
            +
                    glm_tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    # Flow & Hift
         | 
| 55 | 
            +
                    audio_decoder = AudioDecoder(config_path=flow_config, flow_ckpt_path=flow_checkpoint,
         | 
| 56 | 
            +
                                                 hift_ckpt_path=hift_checkpoint,
         | 
| 57 | 
            +
                                                 device=device)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    # Speech tokenizer
         | 
| 60 | 
            +
                    whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
         | 
| 61 | 
            +
                    feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
                def clear_fn():
         | 
| 65 | 
            +
                    return [], [], '', '', '', None, None
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
                def inference_fn(
         | 
| 69 | 
            +
                        temperature: float,
         | 
| 70 | 
            +
                        top_p: float,
         | 
| 71 | 
            +
                        max_new_token: int,
         | 
| 72 | 
            +
                        input_mode,
         | 
| 73 | 
            +
                        audio_path: str | None,
         | 
| 74 | 
            +
                        input_text: str | None,
         | 
| 75 | 
            +
                        history: list[dict],
         | 
| 76 | 
            +
                        previous_input_tokens: str,
         | 
| 77 | 
            +
                        previous_completion_tokens: str,
         | 
| 78 | 
            +
                ):
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    if input_mode == "audio":
         | 
| 81 | 
            +
                        assert audio_path is not None
         | 
| 82 | 
            +
                        history.append({"role": "user", "content": {"path": audio_path}})
         | 
| 83 | 
            +
                        audio_tokens = extract_speech_token(
         | 
| 84 | 
            +
                            whisper_model, feature_extractor, [audio_path]
         | 
| 85 | 
            +
                        )[0]
         | 
| 86 | 
            +
                        if len(audio_tokens) == 0:
         | 
| 87 | 
            +
                            raise gr.Error("No audio tokens extracted")
         | 
| 88 | 
            +
                        audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
         | 
| 89 | 
            +
                        audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
         | 
| 90 | 
            +
                        user_input = audio_tokens
         | 
| 91 | 
            +
                        system_prompt = "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens. "
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    else:
         | 
| 94 | 
            +
                        assert input_text is not None
         | 
| 95 | 
            +
                        history.append({"role": "user", "content": input_text})
         | 
| 96 | 
            +
                        user_input = input_text
         | 
| 97 | 
            +
                        system_prompt = "User will provide you with a text instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens."
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
                    # Gather history
         | 
| 101 | 
            +
                    inputs = previous_input_tokens + previous_completion_tokens
         | 
| 102 | 
            +
                    inputs = inputs.strip()
         | 
| 103 | 
            +
                    if "<|system|>" not in inputs:
         | 
| 104 | 
            +
                        inputs += f"<|system|>\n{system_prompt}"
         | 
| 105 | 
            +
                    inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    with torch.no_grad():
         | 
| 108 | 
            +
                        response = requests.post(
         | 
| 109 | 
            +
                            "http://localhost:10000/generate_stream",
         | 
| 110 | 
            +
                            data=json.dumps({
         | 
| 111 | 
            +
                                "prompt": inputs,
         | 
| 112 | 
            +
                                "temperature": temperature,
         | 
| 113 | 
            +
                                "top_p": top_p,
         | 
| 114 | 
            +
                                "max_new_tokens": max_new_token,
         | 
| 115 | 
            +
                            }),
         | 
| 116 | 
            +
                            stream=True
         | 
| 117 | 
            +
                        )
         | 
| 118 | 
            +
                        text_tokens, audio_tokens = [], []
         | 
| 119 | 
            +
                        audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
         | 
| 120 | 
            +
                        end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
         | 
| 121 | 
            +
                        complete_tokens = []
         | 
| 122 | 
            +
                        prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
         | 
| 123 | 
            +
                        flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
         | 
| 124 | 
            +
                        this_uuid = str(uuid.uuid4())
         | 
| 125 | 
            +
                        tts_speechs = []
         | 
| 126 | 
            +
                        tts_mels = []
         | 
| 127 | 
            +
                        prev_mel = None
         | 
| 128 | 
            +
                        is_finalize = False
         | 
| 129 | 
            +
                        block_size_list =  [25,50,100,150,200]
         | 
| 130 | 
            +
                        block_size_idx = 0
         | 
| 131 | 
            +
                        block_size = block_size_list[block_size_idx]
         | 
| 132 | 
            +
                        audio_processor = AudioStreamProcessor()
         | 
| 133 | 
            +
                        for chunk in response.iter_lines():
         | 
| 134 | 
            +
                            token_id = json.loads(chunk)["token_id"]
         | 
| 135 | 
            +
                            if token_id == end_token_id:
         | 
| 136 | 
            +
                                is_finalize = True
         | 
| 137 | 
            +
                            if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
         | 
| 138 | 
            +
                                if block_size_idx < len(block_size_list) - 1:
         | 
| 139 | 
            +
                                    block_size_idx += 1
         | 
| 140 | 
            +
                                    block_size = block_size_list[block_size_idx]
         | 
| 141 | 
            +
                                tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                                if prev_mel is not None:
         | 
| 144 | 
            +
                                    prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                                tts_speech, tts_mel = audio_decoder.token2wav(tts_token, uuid=this_uuid,
         | 
| 147 | 
            +
                                                                              prompt_token=flow_prompt_speech_token.to(device),
         | 
| 148 | 
            +
                                                                              prompt_feat=prompt_speech_feat.to(device),
         | 
| 149 | 
            +
                                                                              finalize=is_finalize)
         | 
| 150 | 
            +
                                prev_mel = tts_mel
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                                audio_bytes = audio_processor.process(tts_speech.clone().cpu().numpy()[0], last=is_finalize)
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                                tts_speechs.append(tts_speech.squeeze())
         | 
| 155 | 
            +
                                tts_mels.append(tts_mel)
         | 
| 156 | 
            +
                                if audio_bytes:
         | 
| 157 | 
            +
                                    yield history, inputs, '', '', audio_bytes, None
         | 
| 158 | 
            +
                                flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
         | 
| 159 | 
            +
                                audio_tokens = []
         | 
| 160 | 
            +
                            if not is_finalize:
         | 
| 161 | 
            +
                                complete_tokens.append(token_id)
         | 
| 162 | 
            +
                                if token_id >= audio_offset:
         | 
| 163 | 
            +
                                    audio_tokens.append(token_id - audio_offset)
         | 
| 164 | 
            +
                                else:
         | 
| 165 | 
            +
                                    text_tokens.append(token_id)
         | 
| 166 | 
            +
                    tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
         | 
| 167 | 
            +
                    complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
         | 
| 168 | 
            +
                    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
         | 
| 169 | 
            +
                        torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
         | 
| 170 | 
            +
                    history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
         | 
| 171 | 
            +
                    history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
         | 
| 172 | 
            +
                    yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
         | 
| 173 | 
            +
             | 
| 174 | 
            +
             | 
| 175 | 
            +
                def update_input_interface(input_mode):
         | 
| 176 | 
            +
                    if input_mode == "audio":
         | 
| 177 | 
            +
                        return [gr.update(visible=True), gr.update(visible=False)]
         | 
| 178 | 
            +
                    else:
         | 
| 179 | 
            +
                        return [gr.update(visible=False), gr.update(visible=True)]
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
                # Create the Gradio interface
         | 
| 183 | 
            +
                with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
         | 
| 184 | 
            +
                    with gr.Row():
         | 
| 185 | 
            +
                        temperature = gr.Number(
         | 
| 186 | 
            +
                            label="Temperature",
         | 
| 187 | 
            +
                            value=0.2
         | 
| 188 | 
            +
                        )
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                        top_p = gr.Number(
         | 
| 191 | 
            +
                            label="Top p",
         | 
| 192 | 
            +
                            value=0.8
         | 
| 193 | 
            +
                        )
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                        max_new_token = gr.Number(
         | 
| 196 | 
            +
                            label="Max new tokens",
         | 
| 197 | 
            +
                            value=2000,
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    chatbot = gr.Chatbot(
         | 
| 201 | 
            +
                        elem_id="chatbot",
         | 
| 202 | 
            +
                        bubble_full_width=False,
         | 
| 203 | 
            +
                        type="messages",
         | 
| 204 | 
            +
                        scale=1,
         | 
| 205 | 
            +
                    )
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    with gr.Row():
         | 
| 208 | 
            +
                        with gr.Column():
         | 
| 209 | 
            +
                            input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
         | 
| 210 | 
            +
                            audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
         | 
| 211 | 
            +
                            text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                        with gr.Column():
         | 
| 214 | 
            +
                            submit_btn = gr.Button("Submit")
         | 
| 215 | 
            +
                            reset_btn = gr.Button("Clear")
         | 
| 216 | 
            +
                            output_audio = gr.Audio(label="Play", streaming=True,
         | 
| 217 | 
            +
                                                    autoplay=True, show_download_button=False)
         | 
| 218 | 
            +
                            complete_audio = gr.Audio(label="Last Output Audio (If Any)", show_download_button=True)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
                    gr.Markdown("""## Debug Info""")
         | 
| 223 | 
            +
                    with gr.Row():
         | 
| 224 | 
            +
                        input_tokens = gr.Textbox(
         | 
| 225 | 
            +
                            label=f"Input Tokens",
         | 
| 226 | 
            +
                            interactive=False,
         | 
| 227 | 
            +
                        )
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                        completion_tokens = gr.Textbox(
         | 
| 230 | 
            +
                            label=f"Completion Tokens",
         | 
| 231 | 
            +
                            interactive=False,
         | 
| 232 | 
            +
                        )
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    detailed_error = gr.Textbox(
         | 
| 235 | 
            +
                        label=f"Detailed Error",
         | 
| 236 | 
            +
                        interactive=False,
         | 
| 237 | 
            +
                    )
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    history_state = gr.State([])
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    respond = submit_btn.click(
         | 
| 242 | 
            +
                        inference_fn,
         | 
| 243 | 
            +
                        inputs=[
         | 
| 244 | 
            +
                            temperature,
         | 
| 245 | 
            +
                            top_p,
         | 
| 246 | 
            +
                            max_new_token,
         | 
| 247 | 
            +
                            input_mode,
         | 
| 248 | 
            +
                            audio,
         | 
| 249 | 
            +
                            text_input,
         | 
| 250 | 
            +
                            history_state,
         | 
| 251 | 
            +
                            input_tokens,
         | 
| 252 | 
            +
                            completion_tokens,
         | 
| 253 | 
            +
                        ],
         | 
| 254 | 
            +
                        outputs=[history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    respond.then(lambda s: s, [history_state], chatbot)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
         | 
| 260 | 
            +
                    input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                initialize_fn()
         | 
| 263 | 
            +
                # Launch the interface
         | 
| 264 | 
            +
                demo.launch(
         | 
| 265 | 
            +
                    server_port=args.port,
         | 
| 266 | 
            +
                    server_name=args.host
         | 
| 267 | 
            +
                )
         |