File size: 10,586 Bytes
76c374a
 
 
 
 
 
 
 
 
 
ffb11e9
76c374a
 
 
ffb11e9
 
76c374a
 
 
ffb11e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c374a
 
 
 
 
 
 
ffb11e9
76c374a
ffb11e9
76c374a
 
 
 
 
 
 
ffb11e9
76c374a
 
 
ffb11e9
 
76c374a
ffb11e9
76c374a
 
 
 
 
 
 
 
ffb11e9
76c374a
ffb11e9
76c374a
 
 
 
 
 
ffb11e9
76c374a
 
ffb11e9
76c374a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1f1e83
76c374a
 
 
 
 
 
 
 
 
 
 
 
 
 
f19dcec
 
 
76c374a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import torch
import gradio as gr
from PIL import Image
import numpy as np
from typing import Optional

# Import your custom modules
from load_model import preload_models_from_standard_weights
from utils import to_pil_image
from CatVTON_model import CatVTONPix2PixPipeline

import os
import torch
import urllib.request

def load_models():
    try:
        print("πŸš€ Starting model loading process...")

        # Check and download model files if missing
        ckpt_path = "instruct-pix2pix-00-22000.ckpt"
        finetune_path = "maskfree_finetuned_weights.safetensors"

        if not os.path.exists(ckpt_path):
            print(f"⬇️ Downloading {ckpt_path}...")
            url = "https://huggingface.co/timbrooks/instruct-pix2pix/resolve/main/instruct-pix2pix-00-22000.ckpt"
            urllib.request.urlretrieve(url, ckpt_path)
            print("βœ… Download complete.")
        else:
            print("βœ… Checkpoint already exists.")

        if not os.path.exists(finetune_path):
            print(f"❌ Finetune weights file not found: {finetune_path}")
            return None, None

        # Check CUDA availability
        cuda_available = torch.cuda.is_available()
        print(f"CUDA available: {cuda_available}")
        if cuda_available:
            print(f"CUDA device: {torch.cuda.get_device_name()}")
            free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)
            print(f"Available CUDA memory: {free_memory / 1e9:.2f} GB")

        device = "cuda" if cuda_available else "cpu"

        print("πŸ“¦ Loading models from weights...")
        
        models = preload_models_from_standard_weights(
            ckpt_path=ckpt_path, 
            device=device, 
            finetune_weights_path=finetune_path
        )

        if not models:
            print("❌ Failed to load models")
            return None, None

        weight_dtype = torch.float32
        print(f"Converting models to {weight_dtype}...")

        for model_name, model in models.items():
            if model is not None:
                try:
                    model = model.to(dtype=weight_dtype)
                    models[model_name] = model
                    print(f"βœ… {model_name} converted to {weight_dtype}")
                except Exception as e:
                    print(f"⚠️ Could not convert {model_name} to {weight_dtype}: {e}")

        print("πŸ”§ Initializing pipeline...")

        pipeline = CatVTONPix2PixPipeline(
            weight_dtype=weight_dtype,
            device=device,
            skip_safety_check=True,
            models=models,
        )

        print("βœ… Models and pipeline loaded successfully!")
        return models, pipeline

    except Exception as e:
        print(f"❌ Error in load_models: {e}")
        import traceback
        traceback.print_exc()
        return None, None
    
def person_example_fn(image_path):
    """Handle person image examples"""
    if image_path:
        return image_path
    return None

def create_demo(pipeline=None):
    """Create the Gradio interface"""
    
    def submit_function_p2p(
        person_image_path: Optional[str],
        cloth_image_path: Optional[str], 
        num_inference_steps: int = 50,
        guidance_scale: float = 2.5,
        seed: int = 42,
    ) -> Optional[Image.Image]:
        """Process virtual try-on inference"""
        
        try:
            if not person_image_path or not cloth_image_path:
                gr.Warning("Please upload both person and cloth images!")
                return None
            
            if not os.path.exists(person_image_path):
                gr.Error("Person image file not found!")
                return None
                
            if not os.path.exists(cloth_image_path):
                gr.Error("Cloth image file not found!")
                return None
            
            if pipeline is None:
                gr.Error("Models not loaded! Please restart the application.")
                return None
            
            # Load images
            try:
                person_image = Image.open(person_image_path).convert('RGB')
                cloth_image = Image.open(cloth_image_path).convert('RGB')
            except Exception as e:
                gr.Error(f"Error loading images: {str(e)}")
                return None
            
            # Set up generator
            generator = torch.Generator(device=pipeline.device)
            if seed != -1:
                generator.manual_seed(seed)
            
            print("πŸ”„ Processing virtual try-on...")
            
            # Run inference
            with torch.no_grad():
                results = pipeline(
                    person_image,
                    cloth_image,
                    num_inference_steps=num_inference_steps,
                    guidance_scale=guidance_scale,
                    height=512,
                    width=384,
                    generator=generator,
                )
            
            # Process results
            if isinstance(results, list) and len(results) > 0:
                result = results[0]
            else:
                result = results
                
            return result
                
        except Exception as e:
            print(f"❌ Error in submit_function_p2p: {e}")
            import traceback
            traceback.print_exc()
            gr.Error(f"Error during inference: {str(e)}")
            return None
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        max-width: 1200px !important;
    }
    .image-container {
        max-height: 600px;
    }
    """
    
    with gr.Blocks(css=css, title="Virtual Try-On") as demo:
        gr.HTML("""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>πŸ§₯ Virtual Try-On with CatVTON</h1>
            <p>Upload a person image and a clothing item to see how they look together!</p>
        </div>
        """)
        
        with gr.Tab("Mask-Free Virtual Try-On"):
            with gr.Row():
                with gr.Column(scale=1, min_width=350):
                    with gr.Row():
                        image_path_p2p = gr.Image(
                            type="filepath",
                            interactive=True,
                            visible=False,
                        )
                        person_image_p2p = gr.Image(
                            interactive=True, 
                            label="Person Image", 
                            type="filepath",
                            elem_classes=["image-container"]
                        )
                    
                    with gr.Row():
                        cloth_image_p2p = gr.Image(
                            interactive=True, 
                            label="Clothing Image", 
                            type="filepath",
                            elem_classes=["image-container"]
                        )
                    
                    submit_p2p = gr.Button("✨ Generate Try-On", variant="primary", size="lg")
                    
                    gr.Markdown(
                        '<center><span style="color: #FF6B6B; font-weight: bold;">⚠️ Click only once and wait for processing!</span></center>'
                    )
                    
                    with gr.Accordion("πŸ”§ Advanced Options", open=False):
                        num_inference_steps_p2p = gr.Slider(
                            label="Inference Steps", 
                            minimum=10, 
                            maximum=100, 
                            step=5, 
                            value=50,
                            info="More steps = better quality but slower"
                        )
                        guidance_scale_p2p = gr.Slider(
                            label="Guidance Scale", 
                            minimum=0.0, 
                            maximum=7.5, 
                            step=0.5, 
                            value=2.5,
                            info="Higher values = stronger conditioning"
                        )
                        seed_p2p = gr.Slider(
                            label="Seed", 
                            minimum=-1, 
                            maximum=10000, 
                            step=1, 
                            value=42,
                            info="Use -1 for random seed"
                        )
                
                with gr.Column(scale=2, min_width=500):
                    result_image_p2p = gr.Image(
                        interactive=False, 
                        label="Result (Person | Clothing | Generated)",
                        elem_classes=["image-container"]
                    )
                    
                    gr.Markdown("""
                    ### πŸ“‹ Instructions:
                    1. Upload a **person image** (front-facing works best)
                    2. Upload a **clothing item** you want to try on
                    3. Adjust advanced settings if needed
                    4. Click "Generate Try-On" and wait
                    
                    ### πŸ’‘ Tips:
                    - Use clear, high-resolution images
                    - Person should be facing forward
                    - Clothing items work best when laid flat or on a model
                    - Try different seeds if you're not satisfied with results
                    """)
        
        # Event handlers
        image_path_p2p.change(
            person_example_fn, 
            inputs=image_path_p2p, 
            outputs=person_image_p2p
        )
        
        submit_p2p.click(
            submit_function_p2p,
            inputs=[
                person_image_p2p,
                cloth_image_p2p,
                num_inference_steps_p2p,
                guidance_scale_p2p,
                seed_p2p,
            ],
            outputs=result_image_p2p,
        )
    # gr.DeepLinkButton()
    return demo

def app_gradio():
    """Main application function"""
    
    # Load models at startup
    print("πŸš€ Loading models...")
    models, pipeline = load_models()
    if not models or not pipeline:
        print("❌ Failed to load models. Please check your model files.")
        return
    
    # Create and launch demo
    demo = create_demo(pipeline=pipeline)
    demo.launch(
        share=True
    )

if __name__ == "__main__":
    app_gradio()