File size: 18,428 Bytes
02ca424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fbe2a
76c374a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ca424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c374a
02ca424
 
 
 
 
 
 
 
 
 
 
 
 
 
76c374a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ca424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c374a
02ca424
 
 
 
 
f6fbe2a
02ca424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "237f5cbf",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model already downloaded.\n"
     ]
    }
   ],
   "source": [
    "# !wget https://huggingface.co/sd-legacy/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt\n",
    "\n",
    "# check if the model is downloaded,  if not download it\n",
    "import os\n",
    "if not os.path.exists(\"sd-v1-5-inpainting.ckpt\"):\n",
    "    !wget https://huggingface.co/sd-legacy/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt\n",
    "else:\n",
    "    print(\"Model already downloaded.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "24bd99d5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded finetuned weights from finetuned_weights.safetensors\n",
      "Loading 0.in_proj.weight\n",
      "Loading 0.out_proj.weight\n",
      "Loading 0.out_proj.bias\n",
      "Loading 8.in_proj.weight\n",
      "Loading 8.out_proj.weight\n",
      "Loading 8.out_proj.bias\n",
      "Loading 16.in_proj.weight\n",
      "Loading 16.out_proj.weight\n",
      "Loading 16.out_proj.bias\n",
      "Loading 24.in_proj.weight\n",
      "Loading 24.out_proj.weight\n",
      "Loading 24.out_proj.bias\n",
      "Loading 32.in_proj.weight\n",
      "Loading 32.out_proj.weight\n",
      "Loading 32.out_proj.bias\n",
      "Loading 40.in_proj.weight\n",
      "Loading 40.out_proj.weight\n",
      "Loading 40.out_proj.bias\n",
      "Loading 48.in_proj.weight\n",
      "Loading 48.out_proj.weight\n",
      "Loading 48.out_proj.bias\n",
      "Loading 56.in_proj.weight\n",
      "Loading 56.out_proj.weight\n",
      "Loading 56.out_proj.bias\n",
      "Loading 64.in_proj.weight\n",
      "Loading 64.out_proj.weight\n",
      "Loading 64.out_proj.bias\n",
      "Loading 72.in_proj.weight\n",
      "Loading 72.out_proj.weight\n",
      "Loading 72.out_proj.bias\n",
      "Loading 80.in_proj.weight\n",
      "Loading 80.out_proj.weight\n",
      "Loading 80.out_proj.bias\n",
      "Loading 88.in_proj.weight\n",
      "Loading 88.out_proj.weight\n",
      "Loading 88.out_proj.bias\n",
      "Loading 96.in_proj.weight\n",
      "Loading 96.out_proj.weight\n",
      "Loading 96.out_proj.bias\n",
      "Loading 104.in_proj.weight\n",
      "Loading 104.out_proj.weight\n",
      "Loading 104.out_proj.bias\n",
      "Loading 112.in_proj.weight\n",
      "Loading 112.out_proj.weight\n",
      "Loading 112.out_proj.bias\n",
      "Loading 120.in_proj.weight\n",
      "Loading 120.out_proj.weight\n",
      "Loading 120.out_proj.bias\n",
      "\n",
      "Attention module weights loaded from {finetune_weights_path} successfully.\n"
     ]
    }
   ],
   "source": [
    "import load_model\n",
    "\n",
    "models=load_model.preload_models_from_standard_weights(ckpt_path=\"sd-v1-5-inpainting.ckpt\", device=\"cuda\", finetune_weights_path=\"finetuned_weights.safetensors\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "bab24c29",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/mahesh/miniconda3/envs/harsh/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import inspect\n",
    "import os\n",
    "from typing import Union\n",
    "\n",
    "import PIL\n",
    "import numpy as np\n",
    "import torch\n",
    "import tqdm\n",
    "from diffusers.utils.torch_utils import randn_tensor\n",
    "\n",
    "from utils import (check_inputs, get_time_embedding, numpy_to_pil, prepare_image,\n",
    "                   prepare_mask_image, compute_vae_encodings)\n",
    "from ddpm import DDPMSampler\n",
    "\n",
    "class CatVTONPipeline:\n",
    "    def __init__(\n",
    "        self, \n",
    "        weight_dtype=torch.float32,\n",
    "        device='cuda',\n",
    "        compile=False,\n",
    "        skip_safety_check=True,\n",
    "        use_tf32=True,\n",
    "        models={},\n",
    "    ):\n",
    "        self.device = device\n",
    "        self.weight_dtype = weight_dtype\n",
    "        self.skip_safety_check = skip_safety_check\n",
    "        self.models = models\n",
    "\n",
    "        self.generator = torch.Generator(device=device)\n",
    "        self.noise_scheduler = DDPMSampler(generator=self.generator)\n",
    "        # self.vae = AutoencoderKL.from_pretrained(\"stabilityai/sd-vae-ft-mse\").to(device, dtype=weight_dtype)\n",
    "        self.encoder= models.get('encoder', None)\n",
    "        self.decoder= models.get('decoder', None)\n",
    " \n",
    "        self.unet=models.get('diffusion', None)  \n",
    "        # # Enable TF32 for faster training on Ampere GPUs (A100 and RTX 30 series).\n",
    "        if use_tf32:\n",
    "            torch.set_float32_matmul_precision(\"high\")\n",
    "            torch.backends.cuda.matmul.allow_tf32 = True\n",
    "\n",
    "    @torch.no_grad()\n",
    "    def __call__(\n",
    "        self, \n",
    "        image: Union[PIL.Image.Image, torch.Tensor],\n",
    "        condition_image: Union[PIL.Image.Image, torch.Tensor],\n",
    "        mask: Union[PIL.Image.Image, torch.Tensor],\n",
    "        num_inference_steps: int = 50,\n",
    "        guidance_scale: float = 2.5,\n",
    "        height: int = 1024,\n",
    "        width: int = 768,\n",
    "        generator=None,\n",
    "        eta=1.0,\n",
    "        **kwargs\n",
    "    ):\n",
    "        concat_dim = -2  # FIXME: y axis concat\n",
    "        # Prepare inputs to Tensor\n",
    "        image, condition_image, mask = check_inputs(image, condition_image, mask, width, height)\n",
    "        image = prepare_image(image).to(self.device, dtype=self.weight_dtype)\n",
    "        condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)\n",
    "        mask = prepare_mask_image(mask).to(self.device, dtype=self.weight_dtype)\n",
    "        # Mask image\n",
    "        masked_image = image * (mask < 0.5)\n",
    "        # VAE encoding\n",
    "        masked_latent = compute_vae_encodings(masked_image, self.encoder)\n",
    "        condition_latent = compute_vae_encodings(condition_image, self.encoder)\n",
    "        mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode=\"nearest\")\n",
    "        del image, mask, condition_image\n",
    "        # Concatenate latents\n",
    "        masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)\n",
    "        mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)\n",
    "        # Prepare noise\n",
    "        latents = randn_tensor(\n",
    "            masked_latent_concat.shape,\n",
    "            generator=generator,\n",
    "            device=masked_latent_concat.device,\n",
    "            dtype=self.weight_dtype,\n",
    "        )\n",
    "        # Prepare timesteps\n",
    "        self.noise_scheduler.set_inference_timesteps(num_inference_steps)\n",
    "        timesteps = self.noise_scheduler.timesteps\n",
    "        # latents = latents * self.noise_scheduler.init_noise_sigma\n",
    "        latents = self.noise_scheduler.add_noise(latents, timesteps[0])\n",
    "        \n",
    "        # Classifier-Free Guidance\n",
    "        if do_classifier_free_guidance := (guidance_scale > 1.0):\n",
    "            masked_latent_concat = torch.cat(\n",
    "                [\n",
    "                    torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim),\n",
    "                    masked_latent_concat,\n",
    "                ]\n",
    "            )\n",
    "            mask_latent_concat = torch.cat([mask_latent_concat] * 2)\n",
    "\n",
    "        num_warmup_steps = 0  # For simple DDPM, no warmup needed\n",
    "        with tqdm(total=num_inference_steps) as progress_bar:\n",
    "            for i, t in enumerate(timesteps):\n",
    "                # expand the latents if we are doing classifier free guidance\n",
    "                non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)\n",
    "                # non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t)\n",
    "                # prepare the input for the inpainting model\n",
    "                inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1).to(self.device, dtype=self.weight_dtype)\n",
    "                # predict the noise residual\n",
    "                \n",
    "                timestep = t.repeat(inpainting_latent_model_input.shape[0])\n",
    "                time_embedding = get_time_embedding(timestep).to(self.device, dtype=self.weight_dtype)\n",
    "\n",
    "                noise_pred = self.unet(\n",
    "                    inpainting_latent_model_input,\n",
    "                    time_embedding\n",
    "                )\n",
    "                # perform guidance\n",
    "                if do_classifier_free_guidance:\n",
    "                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)\n",
    "                    noise_pred = noise_pred_uncond + guidance_scale * (\n",
    "                        noise_pred_text - noise_pred_uncond\n",
    "                    )\n",
    "                # compute the previous noisy sample x_t -> x_t-1\n",
    "                latents = self.noise_scheduler.step(\n",
    "                    t, latents, noise_pred\n",
    "                )\n",
    "                # call the callback, if provided\n",
    "                if i == len(timesteps) - 1 or (\n",
    "                    (i + 1) > num_warmup_steps\n",
    "                ):\n",
    "                    progress_bar.update()\n",
    "\n",
    "        # Decode the final latents\n",
    "        latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]\n",
    "        # latents = 1 / self.vae.config.scaling_factor * latents\n",
    "        # image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample\n",
    "        image = self.decoder(latents.to(self.device, dtype=self.weight_dtype))\n",
    "        image = (image / 2 + 0.5).clamp(0, 1)\n",
    "        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16\n",
    "        image = image.cpu().permute(0, 2, 3, 1).float().numpy()\n",
    "        image = numpy_to_pil(image)\n",
    "        \n",
    "        return image\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a729bf46",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset vitonhd loaded, total 20 pairs.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.04it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.32it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.01it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  6.82it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  6.86it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.25it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.24it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  6.89it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  6.90it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.02it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.40it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.15it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  6.79it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.07it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.14it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:06<00:00,  7.32it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.13it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.05it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.06it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 50/50 [00:07<00:00,  7.09it/s]\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [02:28<00:00,  7.40s/it]\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "import torch\n",
    "import argparse\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from VITON_Dataset import VITONHDTestDataset\n",
    "from diffusers.image_processor import VaeImageProcessor\n",
    "from tqdm import tqdm\n",
    "from PIL import Image, ImageFilter\n",
    "\n",
    "from utils import repaint, to_pil_image\n",
    "\n",
    "@torch.no_grad()\n",
    "def main():\n",
    "    args=argparse.Namespace()\n",
    "    args.__dict__= {\n",
    "        \"dataset_name\": \"vitonhd\",\n",
    "        \"data_root_path\": \"./sample_dataset\",\n",
    "        \"output_dir\": \"./mask-based-output\",\n",
    "        \"seed\": 555,\n",
    "        \"batch_size\": 1,\n",
    "        \"num_inference_steps\": 50,\n",
    "        \"guidance_scale\": 2.5,\n",
    "        \"width\": 384,\n",
    "        \"height\": 512,\n",
    "        \"repaint\": True,\n",
    "        \"eval_pair\": False,\n",
    "        \"concat_eval_results\": True,\n",
    "        \"allow_tf32\": True,\n",
    "        \"dataloader_num_workers\": 4,\n",
    "        \"mixed_precision\": 'no',\n",
    "        \"concat_axis\": 'y',\n",
    "        \"enable_condition_noise\": True,\n",
    "        \"is_train\": False\n",
    "    }\n",
    "\n",
    "    # Pipeline\n",
    "    pipeline = CatVTONPipeline(\n",
    "        weight_dtype={\n",
    "            \"no\": torch.float32,\n",
    "            \"fp16\": torch.float16,\n",
    "            \"bf16\": torch.bfloat16,\n",
    "        }[args.mixed_precision],\n",
    "        device=\"cuda\",\n",
    "        skip_safety_check=True,\n",
    "        models=models,\n",
    "    )\n",
    "    # Dataset\n",
    "    if args.dataset_name == \"vitonhd\":\n",
    "        dataset = VITONHDTestDataset(args)\n",
    "    else:\n",
    "        raise ValueError(f\"Invalid dataset name {args.dataset}.\")\n",
    "    print(f\"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.\")\n",
    "    dataloader = DataLoader(\n",
    "        dataset,\n",
    "        batch_size=args.batch_size,\n",
    "        shuffle=False,\n",
    "        num_workers=args.dataloader_num_workers\n",
    "    )\n",
    "        \n",
    "    # Inference\n",
    "    generator = torch.Generator(device='cuda').manual_seed(args.seed)\n",
    "    args.output_dir = os.path.join(args.output_dir, f\"{args.dataset_name}-{args.height}\", \"paired\" if args.eval_pair else \"unpaired\")\n",
    "    if not os.path.exists(args.output_dir):\n",
    "        os.makedirs(args.output_dir)\n",
    "        \n",
    "    for batch in tqdm(dataloader):\n",
    "        person_images = batch['person']\n",
    "        cloth_images = batch['cloth']\n",
    "        masks = batch['mask']\n",
    "\n",
    "        results = pipeline(\n",
    "            person_images,\n",
    "            cloth_images,\n",
    "            masks,\n",
    "            num_inference_steps=args.num_inference_steps,\n",
    "            guidance_scale=args.guidance_scale,\n",
    "            height=args.height,\n",
    "            width=args.width,\n",
    "            generator=generator,\n",
    "        )\n",
    "        \n",
    "        if args.concat_eval_results or args.repaint:\n",
    "            person_images = to_pil_image(person_images)\n",
    "            cloth_images = to_pil_image(cloth_images)\n",
    "            masks = to_pil_image(masks)\n",
    "        for i, result in enumerate(results):\n",
    "            person_name = batch['person_name'][i]\n",
    "            output_path = os.path.join(args.output_dir, person_name)\n",
    "            if not os.path.exists(os.path.dirname(output_path)):\n",
    "                os.makedirs(os.path.dirname(output_path))\n",
    "            if args.repaint:\n",
    "                person_path, mask_path = dataset.data[batch['index'][i]]['person'], dataset.data[batch['index'][i]]['mask']\n",
    "                person_image= Image.open(person_path).resize(result.size, Image.LANCZOS)\n",
    "                mask = Image.open(mask_path).resize(result.size, Image.NEAREST)\n",
    "                result = repaint(person_image, mask, result)\n",
    "            if args.concat_eval_results:\n",
    "                w, h = result.size\n",
    "                concated_result = Image.new('RGB', (w*3, h))\n",
    "                concated_result.paste(person_images[i], (0, 0))\n",
    "                concated_result.paste(cloth_images[i], (w, 0))  \n",
    "                concated_result.paste(result, (w*2, 0))\n",
    "                result = concated_result\n",
    "            result.save(output_path)\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55d88911",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "harsh",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}