Spaces:
Running
Running
File size: 14,262 Bytes
4d38ee1 02ca424 4d38ee1 be04c3e 4d38ee1 02ca424 4d38ee1 76c374a 02ca424 4d38ee1 915e59a 02ca424 4d38ee1 02ca424 4d38ee1 76c374a 4d38ee1 02ca424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import torchvision.transforms as transforms
from PIL import Image
import math
import PIL
import numpy as np
import torch
from PIL import Image
from accelerate.state import AcceleratorState
from packaging import version
import accelerate
from typing import List, Optional, Tuple, Set
# from diffusers import UNet2DConditionModel, SchedulerMixin
from tqdm import tqdm
from PIL import Image, ImageFilter
def get_time_embedding(timesteps):
# Handle both scalar and batch inputs
if timesteps.dim() == 0:
timesteps = timesteps.unsqueeze(0)
# Shape: (160,)
freqs = torch.pow(10000, -torch.arange(start=0, end=160, dtype=torch.float32, device=timesteps.device) / 160)
# Shape: (B, 160)
x = timesteps.float()[:, None] * freqs[None]
# Shape: (B, 320)
return torch.cat([torch.cos(x), torch.sin(x)], dim=-1)
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 50
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def to_pil_image(images):
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Prepare the input for inpainting model.
def prepare_inpainting_input(
noisy_latents: torch.Tensor,
mask_latents: torch.Tensor,
condition_latents: torch.Tensor,
enable_condition_noise: bool = True,
condition_concat_dim: int = -1,
) -> torch.Tensor:
"""
Prepare the input for inpainting model.
Args:
noisy_latents (torch.Tensor): Noisy latents.
mask_latents (torch.Tensor): Mask latents.
condition_latents (torch.Tensor): Condition latents.
enable_condition_noise (bool): Enable condition noise.
Returns:
torch.Tensor: Inpainting input.
"""
if not enable_condition_noise:
condition_latents_ = condition_latents.chunk(2, dim=condition_concat_dim)[-1]
noisy_latents = torch.cat([noisy_latents, condition_latents_], dim=condition_concat_dim)
noisy_latents = torch.cat([noisy_latents, mask_latents, condition_latents], dim=1)
return noisy_latents
# Compute VAE encodings
def compute_vae_encodings(image_tensor, encoder, device="cpu"):
"""Encode image using VAE encoder"""
# Generate random noise for encoding
encoder_noise = torch.randn(
(image_tensor.shape[0], 4, image_tensor.shape[2] // 8, image_tensor.shape[3] // 8),
device=device,
)
# Encode using your custom encoder
latent = encoder(image_tensor, encoder_noise)
return latent
def check_inputs(image, condition_image, mask, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor):
return image, condition_image, mask
assert image.size == mask.size, "Image and mask must have the same size"
image = resize_and_crop(image, (width, height))
mask = resize_and_crop(mask, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image, mask
def check_inputs_maskfree(image, condition_image, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor):
return image, condition_image
image = resize_and_crop(image, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image
def repaint_result(result, person_image, mask_image):
result, person, mask = np.array(result), np.array(person_image), np.array(mask_image)
# expand the mask to 3 channels & to 0~1
mask = np.expand_dims(mask, axis=2)
mask = mask / 255.0
# mask for result, ~mask for person
result_ = result * mask + person * (1 - mask)
return Image.fromarray(result_.astype(np.uint8))
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def prepare_mask_image(mask_image):
if isinstance(mask_image, torch.Tensor):
if mask_image.ndim == 2:
# Batch and add channel dim for single mask
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
# Single mask, the 0'th dimension is considered to be
# the existing batch size of 1
mask_image = mask_image.unsqueeze(0)
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
# Batch of mask, the 0'th dimension is considered to be
# the batching dimension
mask_image = mask_image.unsqueeze(1)
# Binarize mask
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
else:
# preprocess mask
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
mask_image = [mask_image]
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
mask_image = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0
)
mask_image = mask_image.astype(np.float32) / 255.0
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
mask_image = torch.from_numpy(mask_image)
return mask_image
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def tensor_to_image(tensor: torch.Tensor):
"""
Converts a torch tensor to PIL Image.
"""
assert tensor.dim() == 3, "Input tensor should be 3-dimensional."
assert tensor.dtype == torch.float32, "Input tensor should be float32."
assert (
tensor.min() >= 0 and tensor.max() <= 1
), "Input tensor should be in range [0, 1]."
tensor = tensor.cpu()
tensor = tensor * 255
tensor = tensor.permute(1, 2, 0)
tensor = tensor.numpy().astype(np.uint8)
image = Image.fromarray(tensor)
return image
def resize_and_crop(image, size):
# Crop to size ratio
w, h = image.size
target_w, target_h = size
if w / h < target_w / target_h:
new_w = w
new_h = w * target_h // target_w
else:
new_h = h
new_w = h * target_w // target_h
image = image.crop(
((w - new_w) // 2, (h - new_h) // 2, (w + new_w) // 2, (h + new_h) // 2)
)
# resize
image = image.resize(size, Image.LANCZOS)
return image
def resize_and_padding(image, size):
# Padding to size ratio
w, h = image.size
target_w, target_h = size
if w / h < target_w / target_h:
new_h = target_h
new_w = w * target_h // h
else:
new_w = target_w
new_h = h * target_w // w
image = image.resize((new_w, new_h), Image.LANCZOS)
# padding
padding = Image.new("RGB", size, (255, 255, 255))
padding.paste(image, ((target_w - new_w) // 2, (target_h - new_h) // 2))
return padding
def save_debug_visualization(
person_images, cloth_images, masks, masked_image,
noisy_latents, predicted_noise, target_latents,
decoder, global_step, output_dir, device="cuda"
):
"""
Simple debug visualization function to save training progress images.
Args:
person_images: Original person images [B, 3, H, W]
cloth_images: Cloth/garment images [B, 3, H, W]
masks: Mask images [B, 1, H, W]
masked_image: Person image with mask applied [B, 3, H, W]
noisy_latents: Noisy latents fed to model [B, C, h, w]
predicted_noise: Model's predicted noise [B, C, h, w]
target_latents: Ground truth latents [B, C, h, w]
decoder: VAE decoder model
global_step: Current training step
output_dir: Directory to save images
device: Device to use
"""
try:
with torch.no_grad():
# Take first sample from batch
person_img = person_images[0:1] # [1, 3, H, W]
cloth_img = cloth_images[0:1]
mask_img = masks[0:1]
masked_img = masked_image[0:1]
# Split concatenated latents if needed (assuming concat on height dim)
if target_latents.shape[-2] > noisy_latents.shape[-2] // 2:
# Latents are concatenated, split them
h = target_latents.shape[-2] // 2
noisy_person_latent = noisy_latents[0:1, :, :h, :]
predicted_person_latent = (noisy_person_latent - predicted_noise[0:1, :, :h, :])
target_person_latent = target_latents[0:1, :, :h, :]
else:
noisy_person_latent = noisy_latents[0:1]
predicted_person_latent = (noisy_person_latent - predicted_noise[0:1])
target_person_latent = target_latents[0:1]
# Decode latents to images
with torch.cuda.amp.autocast(enabled=False):
noisy_decoded = decoder(noisy_person_latent.float())
predicted_decoded = decoder(predicted_person_latent.float())
target_decoded = decoder(target_person_latent.float())
# Convert to PIL images
def tensor_to_pil(tensor):
# tensor: [1, 3, H, W] in range [-1, 1] or [0, 1]
tensor = tensor.squeeze(0) # [3, H, W]
tensor = torch.clamp((tensor + 1.0) / 2.0, 0, 1) # Normalize to [0,1]
tensor = tensor.cpu()
transform = transforms.ToPILImage()
return transform(tensor)
# Convert mask to PIL (single channel)
def mask_to_pil(tensor):
tensor = tensor.squeeze() # Remove batch and channel dims
tensor = torch.clamp(tensor, 0, 1)
tensor = tensor.cpu()
# Convert to 3-channel for visualization
tensor_3ch = tensor.unsqueeze(0).repeat(3, 1, 1)
transform = transforms.ToPILImage()
return transform(tensor_3ch)
# Convert all tensors to PIL images
person_pil = tensor_to_pil(person_img)
cloth_pil = tensor_to_pil(cloth_img)
mask_pil = mask_to_pil(mask_img)
masked_pil = tensor_to_pil(masked_img)
noisy_pil = tensor_to_pil(noisy_decoded)
predicted_pil = tensor_to_pil(predicted_decoded)
target_pil = tensor_to_pil(target_decoded)
# Create labels
labels = ['Person', 'Cloth', 'Mask', 'Masked', 'Noisy', 'Predicted', 'Target']
images = [person_pil, cloth_pil, mask_pil, masked_pil, noisy_pil, predicted_pil, target_pil]
# Get dimensions
width, height = person_pil.size
# Create combined image (horizontal layout)
combined_width = width * len(images)
combined_height = height + 30 # Extra space for labels
combined_img = Image.new('RGB', (combined_width, combined_height), 'white')
# Paste images side by side with labels
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(combined_img)
try:
# Try to use a default font
font = ImageFont.load_default()
except:
font = None
for i, (img, label) in enumerate(zip(images, labels)):
x_offset = i * width
combined_img.paste(img, (x_offset, 30))
# Add label
if font:
draw.text((x_offset + 5, 5), label, fill='black', font=font)
else:
draw.text((x_offset + 5, 5), label, fill='black')
# Save the combined image
debug_dir = os.path.join(output_dir, 'debug_viz')
os.makedirs(debug_dir, exist_ok=True)
save_path = os.path.join(debug_dir, f'debug_step_{global_step:06d}.jpg')
combined_img.save(save_path, 'JPEG', quality=95)
print(f"Debug visualization saved: {save_path}")
except Exception as e:
print(f"Error in debug visualization: {e}")
|