Virtual-Cloths-TryOn / training.py
harsh99's picture
model training script added, removed unnecessary code.
02ca424
import torch
import os
import random
import argparse
from pathlib import Path
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import AdamW
import numpy as np
from PIL import Image
from tqdm import tqdm
from VITON_Dataset import VITONHDTestDataset
# Import your custom modules
from load_model import preload_models_from_standard_weights
from ddpm import DDPMSampler
from utils import check_inputs, get_time_embedding, prepare_image, prepare_mask_image, save_debug_visualization, compute_vae_encodings
from diffusers.utils.torch_utils import randn_tensor
class CatVTONTrainer:
"""Simplified CatVTON Training Class with PEFT, CFG and DREAM support"""
def __init__(
self,
models: Dict[str, nn.Module],
train_dataloader: DataLoader,
val_dataloader: Optional[DataLoader] = None,
device: str = "cuda",
learning_rate: float = 1e-5,
num_epochs: int = 50,
save_steps: int = 1000,
output_dir: str = "./checkpoints",
cfg_dropout_prob: float = 0.1,
max_grad_norm: float = 1.0,
use_peft: bool = True,
dream_lambda: float = 10.0,
resume_from_checkpoint: Optional[str] = None,
use_mixed_precision: bool = True,
height=512,
width=384,
):
self.training = True
self.models = models
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.device = device
self.learning_rate = learning_rate
self.num_epochs = num_epochs
self.save_steps = save_steps
self.output_dir = Path(output_dir)
self.cfg_dropout_prob = cfg_dropout_prob
self.max_grad_norm = max_grad_norm
self.use_peft = use_peft
self.dream_lambda = dream_lambda
self.use_mixed_precision = use_mixed_precision
self.height = height
self.width = width
self.generator = torch.Generator(device=device)
# Create output directory
self.output_dir.mkdir(parents=True, exist_ok=True)
# Setup mixed precision training
if self.use_mixed_precision:
self.scaler = torch.cuda.amp.GradScaler()
self.weight_dtype = torch.float16 if use_mixed_precision else torch.float32
# Initialize scheduler and sampler
self.scheduler = DDPMSampler(self.generator, num_training_steps=1000)
# Resume from checkpoint if provided
self.global_step = 0
self.current_epoch = 0
# Setup models and optimizers
self._setup_training()
if resume_from_checkpoint:
self._load_checkpoint(resume_from_checkpoint)
self.encoder = self.models.get('encoder', None)
self.decoder = self.models.get('decoder', None)
self.diffusion = self.models.get('diffusion', None)
def _setup_training(self):
"""Setup models for training with PEFT"""
# Move models to device
for name, model in self.models.items():
model.to(self.device)
# Freeze all parameters first
for model in self.models.values():
for param in model.parameters():
param.requires_grad = False
# Enable training for specific layers based on PEFT strategy
if self.use_peft:
self._enable_peft_training()
else:
# Enable full training for diffusion model
for param in self.diffusion.parameters():
param.requires_grad = True
# Collect trainable parameters
trainable_params = []
total_params = 0
trainable_count = 0
for name, model in self.models.items():
for param_name, param in model.named_parameters():
total_params += param.numel()
if param.requires_grad:
trainable_params.append(param)
trainable_count += param.numel()
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_count:,} ({trainable_count/total_params*100:.2f}%)")
# Setup optimizer - AdamW as per paper
self.optimizer = AdamW(
trainable_params,
lr=self.learning_rate,
betas=(0.9, 0.999),
weight_decay=1e-2,
eps=1e-8
)
# Setup learning rate scheduler (constant)
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
self.optimizer, lr_lambda=lambda epoch: 1.0
)
def _enable_peft_training(self):
"""Enable PEFT training - only self-attention layers"""
print("Enabling PEFT training (self-attention layers only)")
unet = self.models['diffusion'].unet
# Enable attention layers in encoders and decoders
for layers in [unet.encoders, unet.decoders]:
for layer in layers:
for module_idx, module in enumerate(layer):
for name, param in module.named_parameters():
if 'attention_1' in name:
param.requires_grad = True
# Enable attention layers in bottleneck
for layer in unet.bottleneck:
for name, param in layer.named_parameters():
if 'attention_1' in name:
param.requires_grad = True
def compute_loss(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
"""Compute MSE loss for denoising with DREAM strategy"""
person_images = batch['person'].to(self.device)
cloth_images = batch['cloth'].to(self.device)
masks = batch['mask'].to(self.device)
batch_size = person_images.shape[0]
concat_dim = -2 # y axis concat
# Prepare inputs
image, condition_image, mask = check_inputs(person_images, cloth_images, masks, self.width, self.height)
image = prepare_image(person_images).to(self.device, dtype=self.weight_dtype)
condition_image = prepare_image(cloth_images).to(self.device, dtype=self.weight_dtype)
mask = prepare_mask_image(masks).to(self.device, dtype=self.weight_dtype)
# Mask image
masked_image = image * (mask < 0.5)
with torch.cuda.amp.autocast(enabled=self.use_mixed_precision):
# VAE encoding
masked_latent = compute_vae_encodings(masked_image, self.encoder)
person_latent = compute_vae_encodings(person_images, self.encoder)
condition_latent = compute_vae_encodings(condition_image, self.encoder)
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
del image, mask, condition_image
# Apply CFG dropout to garment latent (10% chance)
if self.training and random.random() < self.cfg_dropout_prob:
condition_latent = torch.zeros_like(condition_latent)
# Concatenate latents
input_latents = torch.cat([masked_latent, condition_latent], dim=concat_dim)
mask_input = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)
target_latents = torch.cat([person_latent, condition_latent], dim=concat_dim)
noise = randn_tensor(
target_latents.shape,
generator=self.generator,
device=target_latents.device,
dtype=self.weight_dtype,
)
# timesteps = torch.randint(1, 1000, size=(1,), device=self.device)[0].long().item()
# timesteps = torch.tensor(timesteps, device=self.device)
# timesteps_embedding = get_time_embedding(timesteps).to(self.device, dtype=self.weight_dtype)
timesteps = torch.randint(1, 1000, size=(batch_size,))
timesteps_embedding = get_time_embedding(timesteps).to(self.device, dtype=self.weight_dtype)
# Add noise to latents
noisy_latents = self.scheduler.add_noise(target_latents, timesteps, noise)
# UNet(zt ⊙ Mi ⊙ Xi) where ⊙ is channel concatenation
unet_input = torch.cat([
input_latents, # Xi
mask_input, # Mi
noisy_latents, # zt
], dim=1).to(self.device, dtype=self.weight_dtype) # Channel dimension
# DREAM strategy implementation
if self.dream_lambda > 0:
# Get initial noise prediction
with torch.no_grad():
epsilon_theta = self.diffusion(
unet_input,
timesteps_embedding
)
# DREAM noise combination: ε + λ*εθ
dream_noise = noise + self.dream_lambda * epsilon_theta
# Create new noisy latents with DREAM noise
dream_noisy_latents = self.scheduler.add_noise(target_latents, timesteps, dream_noise)
dream_unet_input = torch.cat([
input_latents,
mask_input,
dream_noisy_latents
], dim=1).to(self.device, dtype=self.weight_dtype)
predicted_noise = self.diffusion(
dream_unet_input,
timesteps_embedding
)
# DREAM loss: |(ε + λεθ) - εθ(ẑt, t)|²
loss = F.mse_loss(predicted_noise, dream_noise)
else:
# Standard training without DREAM
predicted_noise = self.diffusion(
unet_input,
timesteps_embedding,
)
# Standard MSE loss
loss = F.mse_loss(predicted_noise, noise)
if self.global_step % 1000 == 0:
save_debug_visualization(
person_images=person_images,
cloth_images=cloth_images,
masks=masks,
masked_image=masked_image,
noisy_latents=noisy_latents,
predicted_noise=predicted_noise,
target_latents=target_latents,
decoder=self.decoder,
global_step=self.global_step,
output_dir=self.output_dir,
device=self.device
)
return loss
def train_epoch(self) -> float:
"""Train for one epoch - simplified version"""
self.diffusion.train()
total_loss = 0.0
num_batches = len(self.train_dataloader)
# progress_bar = tqdm(self.train_dataloader, desc=f"Epoch {self.current_epoch+1}")
for step, batch in enumerate(self.train_dataloader):
# Zero gradients
self.optimizer.zero_grad()
# Forward pass with mixed precision
if self.use_mixed_precision:
with torch.cuda.amp.autocast():
loss = self.compute_loss(batch)
# Backward pass with scaling
self.scaler.scale(loss).backward()
# Gradient clipping and optimizer step
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
[p for p in self.diffusion.parameters() if p.requires_grad],
self.max_grad_norm
)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
loss = self.compute_loss(batch)
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(
[p for p in self.diffusion.parameters() if p.requires_grad],
self.max_grad_norm
)
# Optimizer step
self.optimizer.step()
# Update learning rate
self.lr_scheduler.step()
self.global_step += 1
total_loss += loss.item()
# Update progress bar
# progress_bar.set_postfix({
# 'loss': loss.item(),
# 'lr': self.optimizer.param_groups[0]['lr'],
# 'step': self.global_step
# })
# Save checkpoint based on steps
if self.global_step % self.save_steps == 0:
self._save_checkpoint()
# Clear cache periodically to prevent OOM
if step % 50 == 0:
torch.cuda.empty_cache()
return total_loss / num_batches
def train(self):
"""Main training loop - simplified version"""
print(f"Starting training for {self.num_epochs} epochs")
print(f"Total training batches per epoch: {len(self.train_dataloader)}")
print(f"Using DREAM with lambda = {self.dream_lambda}")
print(f"Mixed precision: {self.use_mixed_precision}")
for epoch in range(self.current_epoch, self.num_epochs):
self.current_epoch = epoch
# Train one epoch
train_loss = self.train_epoch()
print(f"Epoch {epoch+1}/{self.num_epochs} - Train Loss: {train_loss:.6f}")
# Save epoch checkpoint
if (epoch + 1) % 5 == 0: # Save every 5 epochs
self._save_checkpoint(epoch_checkpoint=True)
# Clear cache at end of epoch
torch.cuda.empty_cache()
# Save final checkpoint
self._save_checkpoint(is_final=True)
print("Training completed!")
def _save_checkpoint(self, is_best: bool = False, epoch_checkpoint: bool = False, is_final: bool = False):
"""Save model checkpoint"""
checkpoint = {
'global_step': self.global_step,
'current_epoch': self.current_epoch,
'diffusion_state_dict': self.diffusion.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'lr_scheduler_state_dict': self.lr_scheduler.state_dict(),
'dream_lambda': self.dream_lambda,
'use_peft': self.use_peft,
}
if self.use_mixed_precision:
checkpoint['scaler_state_dict'] = self.scaler.state_dict()
if is_final:
checkpoint_path = self.output_dir / "final_model.pth"
elif is_best:
checkpoint_path = self.output_dir / "best_model.pth"
elif epoch_checkpoint:
checkpoint_path = self.output_dir / f"checkpoint_epoch_{self.current_epoch+1}.pth"
else:
checkpoint_path = self.output_dir / f"checkpoint_step_{self.global_step}.pth"
torch.save(checkpoint, checkpoint_path)
print(f"Checkpoint saved: {checkpoint_path}")
def _load_checkpoint(self, checkpoint_path: str):
"""Load model checkpoint"""
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['current_epoch']
self.dream_lambda = checkpoint.get('dream_lambda', 10.0)
self.models['diffusion'].load_state_dict(checkpoint['diffusion_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
if self.use_mixed_precision and 'scaler_state_dict' in checkpoint:
self.scaler.load_state_dict(checkpoint['scaler_state_dict'])
print(f"Checkpoint loaded: {checkpoint_path}")
print(f"Resuming from epoch {self.current_epoch}, step {self.global_step}")
def create_dataloaders(args) -> DataLoader:
"""Create training dataloader"""
if args.dataset_name == "vitonhd":
dataset = VITONHDTestDataset(args)
else:
raise ValueError(f"Invalid dataset name {args.dataset_name}.")
print(f"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.")
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
persistent_workers=True,
prefetch_factor=2
)
return dataloader
def main():
args = argparse.Namespace()
args.__dict__ = {
"base_model_path": "sd-v1-5-inpainting.ckpt",
"dataset_name": "vitonhd",
"data_root_path": "./viton-hd-dataset",
"output_dir": "./checkpoints",
"resume_from_checkpoint": "./checkpoints/checkpoint_step_50000.pth",
"seed": 42,
"batch_size": 2,
"width": 384,
"height": 384,
"repaint": True,
"eval_pair": True,
"concat_eval_results": True,
"concat_axis": 'y',
"device": "cuda",
"num_epochs": 50,
"learning_rate": 1e-5,
"max_grad_norm": 1.0,
"cfg_dropout_prob": 0.1,
"dream_lambda": 10.0,
"use_peft": True,
"use_mixed_precision": True,
"save_steps": 10000,
"is_train": True
}
# Set random seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# Optimize CUDA settings
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision("high")
print("-"*100)
# Load pretrained models
print("Loading pretrained models...")
models = preload_models_from_standard_weights(args.base_model_path, args.device)
print("Models loaded successfully.")
print("-"*100)
# Create dataloader
print("Creating dataloader...")
train_dataloader = create_dataloaders(args)
print(f"Training for {args.num_epochs} epochs")
print(f"Batches per epoch: {len(train_dataloader)}")
print("-"*100)
# Initialize trainer
print("Initializing trainer...")
trainer = CatVTONTrainer(
models=models,
train_dataloader=train_dataloader,
device=args.device,
learning_rate=args.learning_rate,
num_epochs=args.num_epochs,
save_steps=args.save_steps,
output_dir=args.output_dir,
cfg_dropout_prob=args.cfg_dropout_prob,
max_grad_norm=args.max_grad_norm,
use_peft=args.use_peft,
dream_lambda=args.dream_lambda,
resume_from_checkpoint=args.resume_from_checkpoint,
use_mixed_precision=args.use_mixed_precision,
height=args.height,
width=args.width
)
# Start training
print("Starting training...")
trainer.train()
if __name__ == "__main__":
main()