Spaces:
Sleeping
Sleeping
bug fixes
Browse files- .gitignore +2 -0
- README.md +251 -1
- diffusion.py +23 -32
- model.py +6 -2
- model_converter.py +80 -81
- pipeline.py +36 -8
- test.ipynb +0 -0
.gitignore
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
*inkpunk-diffusion-v1.ckpt
|
|
|
|
|
|
|
| 2 |
|
| 3 |
# Byte-compiled / optimized / DLL files
|
| 4 |
__pycache__/
|
|
|
|
| 1 |
*inkpunk-diffusion-v1.ckpt
|
| 2 |
+
*sd-v1-5-inpainting.ckpt
|
| 3 |
+
*zalando-hd-resized.zip
|
| 4 |
|
| 5 |
# Byte-compiled / optimized / DLL files
|
| 6 |
__pycache__/
|
README.md
CHANGED
|
@@ -1,4 +1,254 @@
|
|
| 1 |
# stable-diffusion
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
<!-- 1. Download `vocab.json` and `merges.txt` from https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/tokenizer and save them in the `data` folder
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# stable-diffusion
|
| 2 |
|
| 3 |
+
# 🎨 Stable Diffusion & CatVTON Implementation
|
| 4 |
+
|
| 5 |
+
<div align="center">
|
| 6 |
+
|
| 7 |
+

|
| 8 |
+

|
| 9 |
+

|
| 10 |
+

|
| 11 |
+
|
| 12 |
+
*A comprehensive implementation of Stable Diffusion from scratch with CatVTON virtual try-on capabilities*
|
| 13 |
+
|
| 14 |
+
</div>
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## 📋 Table of Contents
|
| 19 |
+
|
| 20 |
+
- [🌟 Overview](#-overview)
|
| 21 |
+
- [🏗️ Project Structure](#️-project-structure)
|
| 22 |
+
- [🚀 Features](#-features)
|
| 23 |
+
- [⚙️ Setup & Installation](#️-setup--installation)
|
| 24 |
+
- [📥 Model Downloads](#-model-downloads)
|
| 25 |
+
- [🎯 CatVTON Integration](#-catvton-integration)
|
| 26 |
+
- [📚 References](#-references)
|
| 27 |
+
- [👤 Author](#-author)
|
| 28 |
+
- [📜 License](#-license)
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
## 🌟 Overview
|
| 33 |
+
|
| 34 |
+
This project implements **Stable Diffusion from scratch** using PyTorch, with an additional **CatVTON (Virtual Cloths Try-On)** model built on top of stable-diffusion. The implementation includes:
|
| 35 |
+
|
| 36 |
+
- ✨ Complete Stable Diffusion pipeline built from ground up **(Branch: Main)**
|
| 37 |
+
- 🎭 CatVTON model for virtual garment try-on **(Branch: CatVTON)**
|
| 38 |
+
- 🧠 Custom attention mechanisms and CLIP integration
|
| 39 |
+
- 🔄 DDPM (Denoising Diffusion Probabilistic Models) implementation
|
| 40 |
+
- 🖼️ Inpainting capabilities using pretrained weights
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
## 🏗️ Project Structure
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
stable-diffusion/
|
| 48 |
+
├── 📁 Core Components
|
| 49 |
+
│ ├── attention.py # Attention mechanisms
|
| 50 |
+
│ ├── clip.py # CLIP model implementation
|
| 51 |
+
│ ├── ddpm.py # DDPM sampler
|
| 52 |
+
│ ├── decoder.py # VAE decoder
|
| 53 |
+
│ ├── encoder.py # VAE encoder
|
| 54 |
+
│ ├── diffusion.py # Diffusion process
|
| 55 |
+
│ ├── model.py # Defining model & loading pre-trained weights
|
| 56 |
+
│ └── pipeline.py # Main pipeline
|
| 57 |
+
│
|
| 58 |
+
├── 📁 Utilities & Interface
|
| 59 |
+
│ ├── interface.py # User interface
|
| 60 |
+
│ ├── model_converter.py # Model conversion utilities
|
| 61 |
+
│ └── requirements.txt # Dependencies
|
| 62 |
+
│
|
| 63 |
+
├── 📁 Data & Models
|
| 64 |
+
│ ├── vocab.json # Tokenizer vocabulary
|
| 65 |
+
│ ├── merges.txt # BPE merges
|
| 66 |
+
│ ├── inkpunk-diffusion-v1.ckpt # Inkpunk model weights
|
| 67 |
+
│ └── sd-v1-5-inpainting.ckpt # Inpainting model weights
|
| 68 |
+
│
|
| 69 |
+
├── 📁 Sample Data
|
| 70 |
+
│ ├── person.jpg # Person image for try-on
|
| 71 |
+
│ ├── garment.jpg # Garment image
|
| 72 |
+
│ ├── agnostic_mask.png # Segmentation mask
|
| 73 |
+
│ ├── dog.jpg # Test image
|
| 74 |
+
│ ├── image.png # Generated sample
|
| 75 |
+
│ └── zalando-hd-resized.zip # Dataset
|
| 76 |
+
│
|
| 77 |
+
└── 📁 Notebooks & Documentation
|
| 78 |
+
├── test.ipynb # Testing notebook
|
| 79 |
+
└── README.md # This file
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
## 🚀 Features
|
| 85 |
+
|
| 86 |
+
### 🎨 Stable Diffusion Core
|
| 87 |
+
- **From-scratch implementation** of Stable Diffusion architecture
|
| 88 |
+
- **Custom CLIP** text encoder integration
|
| 89 |
+
- **VAE encoder/decoder** for latent space operations
|
| 90 |
+
- **DDPM sampling** with configurable steps
|
| 91 |
+
- **Attention mechanisms** optimized for diffusion
|
| 92 |
+
|
| 93 |
+
### 👕 CatVTON Capabilities
|
| 94 |
+
- **Virtual garment try-on** using inpainting
|
| 95 |
+
- **Person-garment alignment** and fitting
|
| 96 |
+
- **Mask-based inpainting** for realistic results
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
## ⚙️ Setup & Installation
|
| 101 |
+
|
| 102 |
+
### Prerequisites
|
| 103 |
+
- Python 3.10.9
|
| 104 |
+
- CUDA-compatible GPU (recommended)
|
| 105 |
+
- Git
|
| 106 |
+
|
| 107 |
+
### 1. Clone Repository
|
| 108 |
+
```bash
|
| 109 |
+
git clone https://github.com/Harsh-Kesharwani/stable-diffusion.git
|
| 110 |
+
cd stable-diffusion
|
| 111 |
+
git checkout CatVTON # Switch to CatVTON branch to use virtual-try-on model
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### 2. Create Virtual Environment
|
| 115 |
+
```bash
|
| 116 |
+
conda create -n stable-diffusion python=3.10.9
|
| 117 |
+
conda activate stable-diffusion
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
### 3. Install Dependencies
|
| 121 |
+
```bash
|
| 122 |
+
pip install -r requirements.txt
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
### 4. Verify Installation
|
| 126 |
+
```bash
|
| 127 |
+
python -c "import torch; print(f'PyTorch version: {torch.__version__}')"
|
| 128 |
+
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## 📥 Model Downloads
|
| 134 |
+
|
| 135 |
+
### Required Files
|
| 136 |
+
|
| 137 |
+
#### 1. Tokenizer Files
|
| 138 |
+
Download from [Stable Diffusion v1.4 Tokenizer](https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/tokenizer):
|
| 139 |
+
- `vocab.json`
|
| 140 |
+
- `merges.txt`
|
| 141 |
+
|
| 142 |
+
#### 2. Model Checkpoints
|
| 143 |
+
- **Inkpunk Diffusion**: Download `inkpunk-diffusion-v1.ckpt` from [Envvi/Inkpunk-Diffusion](https://huggingface.co/Envvi/Inkpunk-Diffusion/tree/main)
|
| 144 |
+
- **Inpainting Model**: Download from [Stable Diffusion v1.5 Inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)
|
| 145 |
+
|
| 146 |
+
### Download Script
|
| 147 |
+
```bash
|
| 148 |
+
# Create data directory if it doesn't exist
|
| 149 |
+
mkdir -p data
|
| 150 |
+
|
| 151 |
+
# Download tokenizer files
|
| 152 |
+
wget -O vocab.json "https://huggingface.co/CompVis/stable-diffusion-v1-4/resolve/main/tokenizer/vocab.json"
|
| 153 |
+
wget -O merges.txt "https://huggingface.co/CompVis/stable-diffusion-v1-4/resolve/main/tokenizer/merges.txt"
|
| 154 |
+
|
| 155 |
+
# Note: Large model files need to be downloaded manually from HuggingFace
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
---
|
| 159 |
+
|
| 160 |
+
### Interactive Interface
|
| 161 |
+
```bash
|
| 162 |
+
python interface.py
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
---
|
| 166 |
+
|
| 167 |
+
## 🎯 CatVTON Integration
|
| 168 |
+
|
| 169 |
+
The CatVTON model extends the base Stable Diffusion with specialized capabilities for virtual garment try-on:
|
| 170 |
+
|
| 171 |
+
### Key Components
|
| 172 |
+
1. **Inpainting Pipeline**: Uses `sd-v1-5-inpainting.ckpt` for mask-based generation
|
| 173 |
+
2. **Garment Alignment**: Automatic alignment of garments to person pose
|
| 174 |
+
3. **Mask Generation**: Automated or manual mask creation for try-on regions
|
| 175 |
+
---
|
| 176 |
+
|
| 177 |
+
## 📚 References
|
| 178 |
+
|
| 179 |
+
### 📖 Implementation Guides
|
| 180 |
+
- [Implementing Stable Diffusion from Scratch - Medium](https://medium.com/@sayedebad.777/implementing-stable-diffusion-from-scratch-using-pytorch-f07d50efcd97)
|
| 181 |
+
- [Stable Diffusion Implementation - YouTube](https://www.youtube.com/watch?v=ZBKpAp_6TGI)
|
| 182 |
+
|
| 183 |
+
### 🤗 HuggingFace Resources
|
| 184 |
+
- [Diffusers: Adapt a Model](https://huggingface.co/docs/diffusers/training/adapt_a_model)
|
| 185 |
+
- [Stable Diffusion v1.5 Inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)
|
| 186 |
+
- [CompVis Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
|
| 187 |
+
- [Inkpunk Diffusion](https://huggingface.co/Envvi/Inkpunk-Diffusion)
|
| 188 |
+
|
| 189 |
+
### 📄 Academic Papers
|
| 190 |
+
- Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models
|
| 191 |
+
- DDPM: Denoising Diffusion Probabilistic Models
|
| 192 |
+
- CatVTON: Category-aware Virtual Try-On Network
|
| 193 |
+
|
| 194 |
+
---
|
| 195 |
+
|
| 196 |
+
## 👤 Author
|
| 197 |
+
|
| 198 |
+
<div align="center">
|
| 199 |
+
|
| 200 |
+
**Harsh Kesharwani**
|
| 201 |
+
|
| 202 |
+
[](https://github.com/Harsh-Kesharwani)
|
| 203 |
+
[](https://www.linkedin.com/in/harsh-kesharwani/)
|
| 204 |
+
[](mailto:harshkesharwani777@gmail.com)
|
| 205 |
+
|
| 206 |
+
*Passionate about AI, Computer Vision, and Generative Models*
|
| 207 |
+
|
| 208 |
+
</div>
|
| 209 |
+
|
| 210 |
+
---
|
| 211 |
+
|
| 212 |
+
## 🤝 Contributing
|
| 213 |
+
|
| 214 |
+
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
|
| 215 |
+
|
| 216 |
+
### Development Setup
|
| 217 |
+
1. Fork the repository
|
| 218 |
+
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
|
| 219 |
+
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
|
| 220 |
+
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 221 |
+
5. Open a Pull Request
|
| 222 |
+
|
| 223 |
+
---
|
| 224 |
+
|
| 225 |
+
## 📜 License
|
| 226 |
+
|
| 227 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 228 |
+
|
| 229 |
+
---
|
| 230 |
+
|
| 231 |
+
## 🙏 Acknowledgments
|
| 232 |
+
|
| 233 |
+
- CompVis team for the original Stable Diffusion implementation
|
| 234 |
+
- HuggingFace for providing pre-trained weights, dataset and references.
|
| 235 |
+
- The open-source community for various implementations and tutorials
|
| 236 |
+
- Zalando Research for the fashion dataset
|
| 237 |
+
|
| 238 |
+
---
|
| 239 |
+
|
| 240 |
+
<div align="center">
|
| 241 |
+
|
| 242 |
+
**⭐ Star this repository if you find it helpful!**
|
| 243 |
+
|
| 244 |
+
*Built with ❤️ by [Harsh Kesharwani](https://www.linkedin.com/in/harsh-kesharwani/)*
|
| 245 |
+
|
| 246 |
+
</div>
|
| 247 |
+
|
| 248 |
+
|
| 249 |
<!-- 1. Download `vocab.json` and `merges.txt` from https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/tokenizer and save them in the `data` folder
|
| 250 |
+
1. Download `inkpunk-diffusion-v1.ckpt` from https://huggingface.co/Envvi/Inkpunk-Diffusion/tree/main and save it in the `data` folder -->
|
| 251 |
+
|
| 252 |
+
<!-- IMPORTANT REFRRENCE
|
| 253 |
+
3. https://huggingface.co/docs/diffusers/training/adapt_a_model -->
|
| 254 |
+
<!-- 4. https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting -->
|
diffusion.py
CHANGED
|
@@ -134,11 +134,11 @@ class SwitchSequential(nn.Sequential):
|
|
| 134 |
return x
|
| 135 |
|
| 136 |
class UNET(nn.Module):
|
| 137 |
-
def __init__(self):
|
| 138 |
super().__init__()
|
| 139 |
self.encoders=nn.ModuleList([
|
| 140 |
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 141 |
-
SwitchSequential(nn.Conv2d(
|
| 142 |
|
| 143 |
# (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 144 |
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
|
@@ -245,11 +245,11 @@ class UNET_OutputLayer(nn.Module):
|
|
| 245 |
return x
|
| 246 |
|
| 247 |
class Diffusion(nn.Module):
|
| 248 |
-
def __init__(self):
|
| 249 |
super().__init__()
|
| 250 |
self.time_embedding=TimeEmbedding(320)
|
| 251 |
-
self.unet=UNET()
|
| 252 |
-
self.final=UNET_OutputLayer(320,
|
| 253 |
|
| 254 |
def forward(self, latent, time):
|
| 255 |
time=self.time_embedding(time)
|
|
@@ -260,38 +260,29 @@ class Diffusion(nn.Module):
|
|
| 260 |
|
| 261 |
return output
|
| 262 |
|
| 263 |
-
if __name__ == "__main__":
|
| 264 |
-
# Dummy inputs
|
| 265 |
-
batch_size = 10
|
| 266 |
-
height = 64
|
| 267 |
-
width = 64
|
| 268 |
-
in_channels = 4
|
| 269 |
-
# context_dim = 768
|
| 270 |
-
seq_len = 77
|
| 271 |
-
|
| 272 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 273 |
-
|
| 274 |
-
# Create model and move to device
|
| 275 |
-
model = Diffusion().to(device)
|
| 276 |
-
|
| 277 |
-
# Random input tensor with 4 channels
|
| 278 |
-
x = torch.randn(batch_size, in_channels, height, width).to(device)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
# Time embedding (e.g., timestep from a diffusion schedule)
|
| 283 |
-
t = torch.randn(batch_size, 320).to(device)
|
| 284 |
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
-
#
|
| 288 |
-
|
|
|
|
| 289 |
|
| 290 |
-
#
|
|
|
|
| 291 |
|
| 292 |
# Forward pass
|
| 293 |
with torch.no_grad():
|
| 294 |
-
output = model(
|
| 295 |
-
print(output)
|
| 296 |
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
return x
|
| 135 |
|
| 136 |
class UNET(nn.Module):
|
| 137 |
+
def __init__(self, in_channels=4):
|
| 138 |
super().__init__()
|
| 139 |
self.encoders=nn.ModuleList([
|
| 140 |
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 141 |
+
SwitchSequential(nn.Conv2d(in_channels, 320, kernel_size=3, padding=1)),
|
| 142 |
|
| 143 |
# (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8)
|
| 144 |
SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)),
|
|
|
|
| 245 |
return x
|
| 246 |
|
| 247 |
class Diffusion(nn.Module):
|
| 248 |
+
def __init__(self, in_channels=4, out_channels=4):
|
| 249 |
super().__init__()
|
| 250 |
self.time_embedding=TimeEmbedding(320)
|
| 251 |
+
self.unet=UNET(in_channels)
|
| 252 |
+
self.final=UNET_OutputLayer(320, out_channels)
|
| 253 |
|
| 254 |
def forward(self, latent, time):
|
| 255 |
time=self.time_embedding(time)
|
|
|
|
| 260 |
|
| 261 |
return output
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
import torch
|
| 265 |
+
from torch import nn
|
|
|
|
|
|
|
| 266 |
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
# Input configurations
|
| 269 |
+
batch_size = 1
|
| 270 |
+
in_channels = 9 # Must match UNET input
|
| 271 |
+
height = 64 # Height / 8 = 64 → original H = 512
|
| 272 |
+
width = 64 # Width / 8 = 64 → original W = 512
|
| 273 |
|
| 274 |
+
# Create dummy inputs
|
| 275 |
+
latent = torch.randn(batch_size, in_channels, height, width) # [1, 4, 64, 64]
|
| 276 |
+
time = torch.randn(batch_size, 320) # [1, 320]
|
| 277 |
|
| 278 |
+
# Initialize model
|
| 279 |
+
model = Diffusion(in_channels=in_channels, out_channels=4)
|
| 280 |
|
| 281 |
# Forward pass
|
| 282 |
with torch.no_grad():
|
| 283 |
+
output = model(latent, time)
|
|
|
|
| 284 |
|
| 285 |
+
# Print input and output shape
|
| 286 |
+
print("Input latent shape:", latent.shape)
|
| 287 |
+
print("Time embedding shape:", time.shape)
|
| 288 |
+
print("Output shape:", output.shape)
|
model.py
CHANGED
|
@@ -6,6 +6,10 @@ from diffusion import Diffusion
|
|
| 6 |
import model_converter
|
| 7 |
|
| 8 |
def preload_models_from_standard_weights(ckpt_path, device):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
state_dict=model_converter.load_from_standard_weights(ckpt_path, device)
|
| 10 |
|
| 11 |
encoder=VAE_Encoder().to(device)
|
|
@@ -14,8 +18,8 @@ def preload_models_from_standard_weights(ckpt_path, device):
|
|
| 14 |
decoder=VAE_Decoder().to(device)
|
| 15 |
decoder.load_state_dict(state_dict['decoder'], strict=True)
|
| 16 |
|
| 17 |
-
diffusion=Diffusion().to(device)
|
| 18 |
-
diffusion.load_state_dict(state_dict['diffusion'], strict=
|
| 19 |
|
| 20 |
clip=CLIP().to(device)
|
| 21 |
clip.load_state_dict(state_dict['clip'], strict=True)
|
|
|
|
| 6 |
import model_converter
|
| 7 |
|
| 8 |
def preload_models_from_standard_weights(ckpt_path, device):
|
| 9 |
+
# CatVTON parameters
|
| 10 |
+
in_channels = 9
|
| 11 |
+
out_channels = 4
|
| 12 |
+
|
| 13 |
state_dict=model_converter.load_from_standard_weights(ckpt_path, device)
|
| 14 |
|
| 15 |
encoder=VAE_Encoder().to(device)
|
|
|
|
| 18 |
decoder=VAE_Decoder().to(device)
|
| 19 |
decoder.load_state_dict(state_dict['decoder'], strict=True)
|
| 20 |
|
| 21 |
+
diffusion=Diffusion(in_channels=in_channels, out_channels=out_channels).to(device)
|
| 22 |
+
diffusion.load_state_dict(state_dict['diffusion'], strict=False)
|
| 23 |
|
| 24 |
clip=CLIP().to(device)
|
| 25 |
clip.load_state_dict(state_dict['clip'], strict=True)
|
model_converter.py
CHANGED
|
@@ -5,7 +5,6 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 5 |
# original_model = torch.load(input_file, map_location=device, weights_only = False)["state_dict"]
|
| 6 |
original_model=torch.load(input_file, weights_only = False)["state_dict"]
|
| 7 |
|
| 8 |
-
|
| 9 |
converted = {}
|
| 10 |
converted['diffusion'] = {}
|
| 11 |
converted['encoder'] = {}
|
|
@@ -38,11 +37,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 38 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 39 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight']
|
| 40 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias']
|
| 41 |
-
converted['diffusion']['unet.encoders.1.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight']
|
| 42 |
-
converted['diffusion']['unet.encoders.1.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight']
|
| 43 |
-
converted['diffusion']['unet.encoders.1.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight']
|
| 44 |
-
converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 45 |
-
converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 46 |
converted['diffusion']['unet.encoders.1.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight']
|
| 47 |
converted['diffusion']['unet.encoders.1.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias']
|
| 48 |
converted['diffusion']['unet.encoders.1.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight']
|
|
@@ -71,11 +70,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 71 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 72 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight']
|
| 73 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias']
|
| 74 |
-
converted['diffusion']['unet.encoders.2.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight']
|
| 75 |
-
converted['diffusion']['unet.encoders.2.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight']
|
| 76 |
-
converted['diffusion']['unet.encoders.2.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight']
|
| 77 |
-
converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 78 |
-
converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 79 |
converted['diffusion']['unet.encoders.2.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight']
|
| 80 |
converted['diffusion']['unet.encoders.2.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias']
|
| 81 |
converted['diffusion']['unet.encoders.2.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight']
|
|
@@ -108,11 +107,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 108 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 109 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
|
| 110 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
|
| 111 |
-
converted['diffusion']['unet.encoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
|
| 112 |
-
converted['diffusion']['unet.encoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
|
| 113 |
-
converted['diffusion']['unet.encoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
|
| 114 |
-
converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 115 |
-
converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 116 |
converted['diffusion']['unet.encoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight']
|
| 117 |
converted['diffusion']['unet.encoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias']
|
| 118 |
converted['diffusion']['unet.encoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight']
|
|
@@ -141,11 +140,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 141 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 142 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
|
| 143 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
|
| 144 |
-
converted['diffusion']['unet.encoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
|
| 145 |
-
converted['diffusion']['unet.encoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
|
| 146 |
-
converted['diffusion']['unet.encoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
|
| 147 |
-
converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 148 |
-
converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 149 |
converted['diffusion']['unet.encoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight']
|
| 150 |
converted['diffusion']['unet.encoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias']
|
| 151 |
converted['diffusion']['unet.encoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight']
|
|
@@ -178,11 +177,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 178 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 179 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
|
| 180 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
|
| 181 |
-
converted['diffusion']['unet.encoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
|
| 182 |
-
converted['diffusion']['unet.encoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
|
| 183 |
-
converted['diffusion']['unet.encoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
|
| 184 |
-
converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 185 |
-
converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 186 |
converted['diffusion']['unet.encoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight']
|
| 187 |
converted['diffusion']['unet.encoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias']
|
| 188 |
converted['diffusion']['unet.encoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight']
|
|
@@ -211,11 +210,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 211 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 212 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
|
| 213 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
|
| 214 |
-
converted['diffusion']['unet.encoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
|
| 215 |
-
converted['diffusion']['unet.encoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
|
| 216 |
-
converted['diffusion']['unet.encoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
|
| 217 |
-
converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 218 |
-
converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 219 |
converted['diffusion']['unet.encoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight']
|
| 220 |
converted['diffusion']['unet.encoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias']
|
| 221 |
converted['diffusion']['unet.encoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight']
|
|
@@ -266,11 +265,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 266 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 267 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight']
|
| 268 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias']
|
| 269 |
-
converted['diffusion']['unet.bottleneck.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight']
|
| 270 |
-
converted['diffusion']['unet.bottleneck.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight']
|
| 271 |
-
converted['diffusion']['unet.bottleneck.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight']
|
| 272 |
-
converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 273 |
-
converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 274 |
converted['diffusion']['unet.bottleneck.1.layernorm_1.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight']
|
| 275 |
converted['diffusion']['unet.bottleneck.1.layernorm_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias']
|
| 276 |
converted['diffusion']['unet.bottleneck.1.layernorm_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight']
|
|
@@ -349,11 +348,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 349 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 350 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight']
|
| 351 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias']
|
| 352 |
-
converted['diffusion']['unet.decoders.3.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight']
|
| 353 |
-
converted['diffusion']['unet.decoders.3.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight']
|
| 354 |
-
converted['diffusion']['unet.decoders.3.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight']
|
| 355 |
-
converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 356 |
-
converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 357 |
converted['diffusion']['unet.decoders.3.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight']
|
| 358 |
converted['diffusion']['unet.decoders.3.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias']
|
| 359 |
converted['diffusion']['unet.decoders.3.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight']
|
|
@@ -384,11 +383,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 384 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 385 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
|
| 386 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
|
| 387 |
-
converted['diffusion']['unet.decoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
|
| 388 |
-
converted['diffusion']['unet.decoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
|
| 389 |
-
converted['diffusion']['unet.decoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
|
| 390 |
-
converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 391 |
-
converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 392 |
converted['diffusion']['unet.decoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight']
|
| 393 |
converted['diffusion']['unet.decoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias']
|
| 394 |
converted['diffusion']['unet.decoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight']
|
|
@@ -419,11 +418,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 419 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 420 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
|
| 421 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
|
| 422 |
-
converted['diffusion']['unet.decoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
|
| 423 |
-
converted['diffusion']['unet.decoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
|
| 424 |
-
converted['diffusion']['unet.decoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
|
| 425 |
-
converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 426 |
-
converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 427 |
converted['diffusion']['unet.decoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight']
|
| 428 |
converted['diffusion']['unet.decoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias']
|
| 429 |
converted['diffusion']['unet.decoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight']
|
|
@@ -456,11 +455,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 456 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 457 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight']
|
| 458 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias']
|
| 459 |
-
converted['diffusion']['unet.decoders.6.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight']
|
| 460 |
-
converted['diffusion']['unet.decoders.6.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight']
|
| 461 |
-
converted['diffusion']['unet.decoders.6.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight']
|
| 462 |
-
converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 463 |
-
converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 464 |
converted['diffusion']['unet.decoders.6.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight']
|
| 465 |
converted['diffusion']['unet.decoders.6.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias']
|
| 466 |
converted['diffusion']['unet.decoders.6.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight']
|
|
@@ -491,11 +490,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 491 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 492 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
|
| 493 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
|
| 494 |
-
converted['diffusion']['unet.decoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
|
| 495 |
-
converted['diffusion']['unet.decoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
|
| 496 |
-
converted['diffusion']['unet.decoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
|
| 497 |
-
converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 498 |
-
converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 499 |
converted['diffusion']['unet.decoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight']
|
| 500 |
converted['diffusion']['unet.decoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias']
|
| 501 |
converted['diffusion']['unet.decoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight']
|
|
@@ -526,11 +525,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 526 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 527 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
|
| 528 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
|
| 529 |
-
converted['diffusion']['unet.decoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
|
| 530 |
-
converted['diffusion']['unet.decoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
|
| 531 |
-
converted['diffusion']['unet.decoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
|
| 532 |
-
converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 533 |
-
converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 534 |
converted['diffusion']['unet.decoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight']
|
| 535 |
converted['diffusion']['unet.decoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias']
|
| 536 |
converted['diffusion']['unet.decoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight']
|
|
@@ -563,11 +562,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 563 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 564 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight']
|
| 565 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias']
|
| 566 |
-
converted['diffusion']['unet.decoders.9.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight']
|
| 567 |
-
converted['diffusion']['unet.decoders.9.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight']
|
| 568 |
-
converted['diffusion']['unet.decoders.9.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight']
|
| 569 |
-
converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 570 |
-
converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 571 |
converted['diffusion']['unet.decoders.9.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight']
|
| 572 |
converted['diffusion']['unet.decoders.9.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias']
|
| 573 |
converted['diffusion']['unet.decoders.9.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight']
|
|
@@ -598,11 +597,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 598 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 599 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight']
|
| 600 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias']
|
| 601 |
-
converted['diffusion']['unet.decoders.10.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight']
|
| 602 |
-
converted['diffusion']['unet.decoders.10.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight']
|
| 603 |
-
converted['diffusion']['unet.decoders.10.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight']
|
| 604 |
-
converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 605 |
-
converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 606 |
converted['diffusion']['unet.decoders.10.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight']
|
| 607 |
converted['diffusion']['unet.decoders.10.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias']
|
| 608 |
converted['diffusion']['unet.decoders.10.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight']
|
|
@@ -633,11 +632,11 @@ def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.
|
|
| 633 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 634 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight']
|
| 635 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias']
|
| 636 |
-
converted['diffusion']['unet.decoders.11.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight']
|
| 637 |
-
converted['diffusion']['unet.decoders.11.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight']
|
| 638 |
-
converted['diffusion']['unet.decoders.11.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight']
|
| 639 |
-
converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 640 |
-
converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 641 |
converted['diffusion']['unet.decoders.11.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight']
|
| 642 |
converted['diffusion']['unet.decoders.11.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias']
|
| 643 |
converted['diffusion']['unet.decoders.11.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 5 |
# original_model = torch.load(input_file, map_location=device, weights_only = False)["state_dict"]
|
| 6 |
original_model=torch.load(input_file, weights_only = False)["state_dict"]
|
| 7 |
|
|
|
|
| 8 |
converted = {}
|
| 9 |
converted['diffusion'] = {}
|
| 10 |
converted['encoder'] = {}
|
|
|
|
| 37 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 38 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight']
|
| 39 |
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias']
|
| 40 |
+
# converted['diffusion']['unet.encoders.1.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight']
|
| 41 |
+
# converted['diffusion']['unet.encoders.1.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight']
|
| 42 |
+
# converted['diffusion']['unet.encoders.1.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight']
|
| 43 |
+
# converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 44 |
+
# converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 45 |
converted['diffusion']['unet.encoders.1.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight']
|
| 46 |
converted['diffusion']['unet.encoders.1.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias']
|
| 47 |
converted['diffusion']['unet.encoders.1.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 70 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 71 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight']
|
| 72 |
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias']
|
| 73 |
+
# converted['diffusion']['unet.encoders.2.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight']
|
| 74 |
+
# converted['diffusion']['unet.encoders.2.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight']
|
| 75 |
+
# converted['diffusion']['unet.encoders.2.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight']
|
| 76 |
+
# converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 77 |
+
# converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 78 |
converted['diffusion']['unet.encoders.2.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight']
|
| 79 |
converted['diffusion']['unet.encoders.2.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias']
|
| 80 |
converted['diffusion']['unet.encoders.2.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 107 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 108 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
|
| 109 |
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
|
| 110 |
+
# converted['diffusion']['unet.encoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
|
| 111 |
+
# converted['diffusion']['unet.encoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
|
| 112 |
+
# converted['diffusion']['unet.encoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
|
| 113 |
+
# converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 114 |
+
# converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 115 |
converted['diffusion']['unet.encoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight']
|
| 116 |
converted['diffusion']['unet.encoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias']
|
| 117 |
converted['diffusion']['unet.encoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 140 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 141 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
|
| 142 |
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
|
| 143 |
+
# converted['diffusion']['unet.encoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
|
| 144 |
+
# converted['diffusion']['unet.encoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
|
| 145 |
+
# converted['diffusion']['unet.encoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
|
| 146 |
+
# converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 147 |
+
# converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 148 |
converted['diffusion']['unet.encoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight']
|
| 149 |
converted['diffusion']['unet.encoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias']
|
| 150 |
converted['diffusion']['unet.encoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 177 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 178 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
|
| 179 |
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
|
| 180 |
+
# converted['diffusion']['unet.encoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
|
| 181 |
+
# converted['diffusion']['unet.encoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
|
| 182 |
+
# converted['diffusion']['unet.encoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
|
| 183 |
+
# converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 184 |
+
# converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 185 |
converted['diffusion']['unet.encoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight']
|
| 186 |
converted['diffusion']['unet.encoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias']
|
| 187 |
converted['diffusion']['unet.encoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 210 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 211 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
|
| 212 |
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
|
| 213 |
+
# converted['diffusion']['unet.encoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
|
| 214 |
+
# converted['diffusion']['unet.encoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
|
| 215 |
+
# converted['diffusion']['unet.encoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
|
| 216 |
+
# converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 217 |
+
# converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 218 |
converted['diffusion']['unet.encoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight']
|
| 219 |
converted['diffusion']['unet.encoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias']
|
| 220 |
converted['diffusion']['unet.encoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 265 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 266 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight']
|
| 267 |
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias']
|
| 268 |
+
# converted['diffusion']['unet.bottleneck.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight']
|
| 269 |
+
# converted['diffusion']['unet.bottleneck.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight']
|
| 270 |
+
# converted['diffusion']['unet.bottleneck.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight']
|
| 271 |
+
# converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 272 |
+
# converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 273 |
converted['diffusion']['unet.bottleneck.1.layernorm_1.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight']
|
| 274 |
converted['diffusion']['unet.bottleneck.1.layernorm_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias']
|
| 275 |
converted['diffusion']['unet.bottleneck.1.layernorm_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 348 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 349 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight']
|
| 350 |
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias']
|
| 351 |
+
# converted['diffusion']['unet.decoders.3.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight']
|
| 352 |
+
# converted['diffusion']['unet.decoders.3.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight']
|
| 353 |
+
# converted['diffusion']['unet.decoders.3.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight']
|
| 354 |
+
# converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 355 |
+
# converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 356 |
converted['diffusion']['unet.decoders.3.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight']
|
| 357 |
converted['diffusion']['unet.decoders.3.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias']
|
| 358 |
converted['diffusion']['unet.decoders.3.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 383 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 384 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
|
| 385 |
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
|
| 386 |
+
# converted['diffusion']['unet.decoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
|
| 387 |
+
# converted['diffusion']['unet.decoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
|
| 388 |
+
# converted['diffusion']['unet.decoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
|
| 389 |
+
# converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 390 |
+
# converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 391 |
converted['diffusion']['unet.decoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight']
|
| 392 |
converted['diffusion']['unet.decoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias']
|
| 393 |
converted['diffusion']['unet.decoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 418 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 419 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
|
| 420 |
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
|
| 421 |
+
# converted['diffusion']['unet.decoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
|
| 422 |
+
# converted['diffusion']['unet.decoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
|
| 423 |
+
# converted['diffusion']['unet.decoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
|
| 424 |
+
# converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 425 |
+
# converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 426 |
converted['diffusion']['unet.decoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight']
|
| 427 |
converted['diffusion']['unet.decoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias']
|
| 428 |
converted['diffusion']['unet.decoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 455 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 456 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight']
|
| 457 |
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias']
|
| 458 |
+
# converted['diffusion']['unet.decoders.6.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight']
|
| 459 |
+
# converted['diffusion']['unet.decoders.6.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight']
|
| 460 |
+
# converted['diffusion']['unet.decoders.6.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight']
|
| 461 |
+
# converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 462 |
+
# converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 463 |
converted['diffusion']['unet.decoders.6.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight']
|
| 464 |
converted['diffusion']['unet.decoders.6.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias']
|
| 465 |
converted['diffusion']['unet.decoders.6.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 490 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 491 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
|
| 492 |
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
|
| 493 |
+
# converted['diffusion']['unet.decoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
|
| 494 |
+
# converted['diffusion']['unet.decoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
|
| 495 |
+
# converted['diffusion']['unet.decoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
|
| 496 |
+
# converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 497 |
+
# converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 498 |
converted['diffusion']['unet.decoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight']
|
| 499 |
converted['diffusion']['unet.decoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias']
|
| 500 |
converted['diffusion']['unet.decoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 525 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 526 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
|
| 527 |
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
|
| 528 |
+
# converted['diffusion']['unet.decoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
|
| 529 |
+
# converted['diffusion']['unet.decoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
|
| 530 |
+
# converted['diffusion']['unet.decoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
|
| 531 |
+
# converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 532 |
+
# converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 533 |
converted['diffusion']['unet.decoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight']
|
| 534 |
converted['diffusion']['unet.decoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias']
|
| 535 |
converted['diffusion']['unet.decoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 562 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 563 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight']
|
| 564 |
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias']
|
| 565 |
+
# converted['diffusion']['unet.decoders.9.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight']
|
| 566 |
+
# converted['diffusion']['unet.decoders.9.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight']
|
| 567 |
+
# converted['diffusion']['unet.decoders.9.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight']
|
| 568 |
+
# converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 569 |
+
# converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 570 |
converted['diffusion']['unet.decoders.9.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight']
|
| 571 |
converted['diffusion']['unet.decoders.9.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias']
|
| 572 |
converted['diffusion']['unet.decoders.9.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 597 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 598 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight']
|
| 599 |
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias']
|
| 600 |
+
# converted['diffusion']['unet.decoders.10.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight']
|
| 601 |
+
# converted['diffusion']['unet.decoders.10.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight']
|
| 602 |
+
# converted['diffusion']['unet.decoders.10.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight']
|
| 603 |
+
# converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 604 |
+
# converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 605 |
converted['diffusion']['unet.decoders.10.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight']
|
| 606 |
converted['diffusion']['unet.decoders.10.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias']
|
| 607 |
converted['diffusion']['unet.decoders.10.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight']
|
|
|
|
| 632 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias']
|
| 633 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight']
|
| 634 |
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias']
|
| 635 |
+
# converted['diffusion']['unet.decoders.11.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight']
|
| 636 |
+
# converted['diffusion']['unet.decoders.11.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight']
|
| 637 |
+
# converted['diffusion']['unet.decoders.11.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight']
|
| 638 |
+
# converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight']
|
| 639 |
+
# converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias']
|
| 640 |
converted['diffusion']['unet.decoders.11.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight']
|
| 641 |
converted['diffusion']['unet.decoders.11.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias']
|
| 642 |
converted['diffusion']['unet.decoders.11.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight']
|
pipeline.py
CHANGED
|
@@ -6,6 +6,7 @@ import numpy as np
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
from ddpm import DDPMSampler
|
| 8 |
from PIL import Image
|
|
|
|
| 9 |
|
| 10 |
WIDTH = 512
|
| 11 |
HEIGHT = 512
|
|
@@ -225,15 +226,21 @@ def generate(
|
|
| 225 |
else:
|
| 226 |
generator.manual_seed(seed)
|
| 227 |
|
| 228 |
-
concat_dim = -
|
|
|
|
| 229 |
# Prepare inputs to Tensor
|
| 230 |
image, condition_image, mask = check_inputs(image, condition_image, mask, width, height)
|
|
|
|
| 231 |
image = prepare_image(image).to(device)
|
| 232 |
condition_image = prepare_image(condition_image).to(device)
|
| 233 |
mask = prepare_mask_image(mask).to(device)
|
|
|
|
|
|
|
| 234 |
# Mask image
|
| 235 |
masked_image = image * (mask < 0.5)
|
| 236 |
|
|
|
|
|
|
|
| 237 |
# VAE encoding
|
| 238 |
encoder = models.get('encoder', None)
|
| 239 |
if encoder is None:
|
|
@@ -244,12 +251,18 @@ def generate(
|
|
| 244 |
condition_latent = compute_vae_encodings(condition_image, encoder, device)
|
| 245 |
to_idle(encoder)
|
| 246 |
|
|
|
|
|
|
|
| 247 |
# Concatenate latents
|
| 248 |
masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)
|
| 249 |
|
|
|
|
|
|
|
| 250 |
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
|
| 251 |
del image, mask, condition_image
|
| 252 |
mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)
|
|
|
|
|
|
|
| 253 |
|
| 254 |
# Initialize latents
|
| 255 |
latents = torch.randn(
|
|
@@ -258,6 +271,8 @@ def generate(
|
|
| 258 |
device=masked_latent_concat.device,
|
| 259 |
dtype=masked_latent_concat.dtype
|
| 260 |
)
|
|
|
|
|
|
|
| 261 |
|
| 262 |
# Prepare timesteps
|
| 263 |
if sampler_name == "ddpm":
|
|
@@ -267,7 +282,7 @@ def generate(
|
|
| 267 |
raise ValueError("Unknown sampler value %s. " % sampler_name)
|
| 268 |
|
| 269 |
timesteps = sampler.timesteps
|
| 270 |
-
latents = sampler.add_noise(latents, timesteps[0])
|
| 271 |
|
| 272 |
# Classifier-Free Guidance
|
| 273 |
do_classifier_free_guidance = guidance_scale > 1.0
|
|
@@ -280,6 +295,9 @@ def generate(
|
|
| 280 |
)
|
| 281 |
mask_latent_concat = torch.cat([mask_latent_concat] * 2)
|
| 282 |
|
|
|
|
|
|
|
|
|
|
| 283 |
# Denoising loop - Fixed: removed self references and incorrect scheduler calls
|
| 284 |
num_warmup_steps = 0 # For simple DDPM, no warmup needed
|
| 285 |
|
|
@@ -287,9 +305,13 @@ def generate(
|
|
| 287 |
for i, t in enumerate(timesteps):
|
| 288 |
# expand the latents if we are doing classifier free guidance
|
| 289 |
non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
|
|
|
|
|
|
|
| 290 |
|
| 291 |
# prepare the input for the inpainting model
|
| 292 |
inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1)
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# predict the noise residual
|
| 295 |
diffusion = models.get('diffusion', None)
|
|
@@ -299,7 +321,9 @@ def generate(
|
|
| 299 |
diffusion.to(device)
|
| 300 |
|
| 301 |
# Create time embedding for the current timestep
|
| 302 |
-
time_embedding = get_time_embedding(t.item()).
|
|
|
|
|
|
|
| 303 |
if do_classifier_free_guidance:
|
| 304 |
time_embedding = torch.cat([time_embedding] * 2)
|
| 305 |
|
|
@@ -334,6 +358,7 @@ def generate(
|
|
| 334 |
decoder.to(device)
|
| 335 |
|
| 336 |
image = decoder(latents.to(device))
|
|
|
|
| 337 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 338 |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 339 |
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
@@ -364,12 +389,12 @@ def get_time_embedding(timestep):
|
|
| 364 |
|
| 365 |
if __name__ == "__main__":
|
| 366 |
# Example usage
|
| 367 |
-
image = Image.open("
|
| 368 |
-
condition_image = Image.open("
|
| 369 |
-
mask = Image.open("
|
| 370 |
|
| 371 |
-
#
|
| 372 |
-
|
| 373 |
|
| 374 |
# Generate image
|
| 375 |
generated_image = generate(
|
|
@@ -380,6 +405,9 @@ if __name__ == "__main__":
|
|
| 380 |
guidance_scale=2.5,
|
| 381 |
width=WIDTH,
|
| 382 |
height=HEIGHT,
|
|
|
|
|
|
|
|
|
|
| 383 |
device="cuda" # or "cpu"
|
| 384 |
)
|
| 385 |
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
from ddpm import DDPMSampler
|
| 8 |
from PIL import Image
|
| 9 |
+
import model
|
| 10 |
|
| 11 |
WIDTH = 512
|
| 12 |
HEIGHT = 512
|
|
|
|
| 226 |
else:
|
| 227 |
generator.manual_seed(seed)
|
| 228 |
|
| 229 |
+
concat_dim = -1 # FIXME: y axis concat
|
| 230 |
+
|
| 231 |
# Prepare inputs to Tensor
|
| 232 |
image, condition_image, mask = check_inputs(image, condition_image, mask, width, height)
|
| 233 |
+
# print(f"Input image shape: {image.shape}, condition image shape: {condition_image.shape}, mask shape: {mask.shape}")
|
| 234 |
image = prepare_image(image).to(device)
|
| 235 |
condition_image = prepare_image(condition_image).to(device)
|
| 236 |
mask = prepare_mask_image(mask).to(device)
|
| 237 |
+
|
| 238 |
+
print(f"Prepared image shape: {image.shape}, condition image shape: {condition_image.shape}, mask shape: {mask.shape}")
|
| 239 |
# Mask image
|
| 240 |
masked_image = image * (mask < 0.5)
|
| 241 |
|
| 242 |
+
print(f"Masked image shape: {masked_image.shape}")
|
| 243 |
+
|
| 244 |
# VAE encoding
|
| 245 |
encoder = models.get('encoder', None)
|
| 246 |
if encoder is None:
|
|
|
|
| 251 |
condition_latent = compute_vae_encodings(condition_image, encoder, device)
|
| 252 |
to_idle(encoder)
|
| 253 |
|
| 254 |
+
print(f"Masked latent shape: {masked_latent.shape}, condition latent shape: {condition_latent.shape}")
|
| 255 |
+
|
| 256 |
# Concatenate latents
|
| 257 |
masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)
|
| 258 |
|
| 259 |
+
print(f"Masked Person latent + garment latent: {masked_latent_concat.shape}")
|
| 260 |
+
|
| 261 |
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
|
| 262 |
del image, mask, condition_image
|
| 263 |
mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)
|
| 264 |
+
|
| 265 |
+
print(f"Mask latent concat shape: {mask_latent_concat.shape}")
|
| 266 |
|
| 267 |
# Initialize latents
|
| 268 |
latents = torch.randn(
|
|
|
|
| 271 |
device=masked_latent_concat.device,
|
| 272 |
dtype=masked_latent_concat.dtype
|
| 273 |
)
|
| 274 |
+
|
| 275 |
+
print(f"Latents shape: {latents.shape}")
|
| 276 |
|
| 277 |
# Prepare timesteps
|
| 278 |
if sampler_name == "ddpm":
|
|
|
|
| 282 |
raise ValueError("Unknown sampler value %s. " % sampler_name)
|
| 283 |
|
| 284 |
timesteps = sampler.timesteps
|
| 285 |
+
# latents = sampler.add_noise(latents, timesteps[0])
|
| 286 |
|
| 287 |
# Classifier-Free Guidance
|
| 288 |
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
| 295 |
)
|
| 296 |
mask_latent_concat = torch.cat([mask_latent_concat] * 2)
|
| 297 |
|
| 298 |
+
print(f"Masked latent concat for classifier-free guidance: {masked_latent_concat.shape}, mask latent concat: {mask_latent_concat.shape}")
|
| 299 |
+
|
| 300 |
+
|
| 301 |
# Denoising loop - Fixed: removed self references and incorrect scheduler calls
|
| 302 |
num_warmup_steps = 0 # For simple DDPM, no warmup needed
|
| 303 |
|
|
|
|
| 305 |
for i, t in enumerate(timesteps):
|
| 306 |
# expand the latents if we are doing classifier free guidance
|
| 307 |
non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
|
| 308 |
+
|
| 309 |
+
# print(f"Non-inpainting latent model input shape: {non_inpainting_latent_model_input.shape}")
|
| 310 |
|
| 311 |
# prepare the input for the inpainting model
|
| 312 |
inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1)
|
| 313 |
+
|
| 314 |
+
# print(f"Inpainting latent model input shape: {inpainting_latent_model_input.shape}")
|
| 315 |
|
| 316 |
# predict the noise residual
|
| 317 |
diffusion = models.get('diffusion', None)
|
|
|
|
| 321 |
diffusion.to(device)
|
| 322 |
|
| 323 |
# Create time embedding for the current timestep
|
| 324 |
+
time_embedding = get_time_embedding(t.item()).to(device)
|
| 325 |
+
# print(f"Time embedding shape: {time_embedding.shape}")
|
| 326 |
+
|
| 327 |
if do_classifier_free_guidance:
|
| 328 |
time_embedding = torch.cat([time_embedding] * 2)
|
| 329 |
|
|
|
|
| 358 |
decoder.to(device)
|
| 359 |
|
| 360 |
image = decoder(latents.to(device))
|
| 361 |
+
# image = rescale(image, (-1, 1), (0, 255), clamp=True)
|
| 362 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 363 |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 364 |
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
|
|
| 389 |
|
| 390 |
if __name__ == "__main__":
|
| 391 |
# Example usage
|
| 392 |
+
image = Image.open("person.jpg").convert("RGB")
|
| 393 |
+
condition_image = Image.open("image.png").convert("RGB")
|
| 394 |
+
mask = Image.open("agnostic_mask.png").convert("L")
|
| 395 |
|
| 396 |
+
# Load models
|
| 397 |
+
models=model.preload_models_from_standard_weights("sd-v1-5-inpainting.ckpt", device="cuda")
|
| 398 |
|
| 399 |
# Generate image
|
| 400 |
generated_image = generate(
|
|
|
|
| 405 |
guidance_scale=2.5,
|
| 406 |
width=WIDTH,
|
| 407 |
height=HEIGHT,
|
| 408 |
+
models=models,
|
| 409 |
+
sampler_name="ddpm",
|
| 410 |
+
seed=42,
|
| 411 |
device="cuda" # or "cpu"
|
| 412 |
)
|
| 413 |
|
test.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|