import torch import torch.nn as nn import torch.nn.functional as F from decoder import VAE_AttentionBlock, VAE_ResidualBlock class VAE_Encoder(nn.Sequential): def __init__(self): super().__init__( # (Batch_Size, Channel, Height, Width) -> (Batch_Size, 128, Height, Width) nn.Conv2d(3, 128, kernel_size=3, padding=1), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) VAE_ResidualBlock(128, 128), VAE_ResidualBlock(128, 128), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height/2 , Width/2) nn.Conv2d(128, 128, kernel_size=3,stride=2, padding=0), # (Batch_Size, 128, Height/2 , Width/2) -> (Batch_Size, 256, Height/2 , Width/2) VAE_ResidualBlock(128, 256), # (Batch_Size, 256, Height/2 , Width/2) -> (Batch_Size, 256, Height/2 , Width/2) VAE_ResidualBlock(256, 256), # (Batch_Size, 256, Height/2 , Width/2) -> (Batch_Size, 256, Height/4 , Width/4) nn.Conv2d(256, 256, kernel_size=3,stride=2, padding=0), # (Batch_Size, 256, Height/4 , Width/4) -> (Batch_Size, 512, Height/4 , Width/4) VAE_ResidualBlock(256, 512), # (Batch_Size, 512, Height/4 , Width/4) -> (Batch_Size, 512, Height/4 , Width/4) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height/4 , Width/4) -> (Batch_Size, 512, Height/8 , Width/8) nn.Conv2d(512, 512, kernel_size=3,stride=2, padding=0), # (Batch_Size, 512, Height/8 , Width/8) -> (Batch_Size, 512, Height/8 , Width/8) VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height/8 , Width/8) -> (Batch_Size, 512, Height/8 , Width/8) VAE_AttentionBlock(512), VAE_ResidualBlock(512, 512), nn.GroupNorm(32, 512), nn.SiLU(), nn.Conv2d(512, 8, kernel_size=3, padding=1), # (Batch_Size, 8, Height/8, Width/8) -> (Batch_Size, 8, Height/8, Width/8) nn.Conv2d(8, 8, kernel_size=1, padding=0) ) def forward(self, x: torch.Tensor, noise: torch.Tensor) -> torch.Tensor: for module in self: if getattr(module, 'stride', None) == (2, 2): x=F.pad(x, (0,1,0,1)) x=module(x) # (Batch_Size, 8, Height, Height/8, Width/8) -> two tensors of shape (Batch_Size, 4, Height/8, Width/8) mean, log_var=torch.chunk(x, 2, dim=1) log_var=torch.clamp(log_var, -30, 20) var=log_var.exp() stdev=var.sqrt() Z=mean + stdev * noise Z*=0.18215 # print('-'*100) # print('Z shape: ', Z.shape) # print('-'*100) return Z if __name__ == "__main__": model = VAE_Encoder() model.eval() # Create a dummy input tensor: (batch_size=1, channels=3, height=64, width=64) x = torch.randn(1, 3, 64, 64) noise = torch.randn(1, 4, 8, 8) # Match the latent shape (Z) with torch.no_grad(): output = model(x, noise) print("Input shape :", x.shape) print("Output shape:", output.shape)