import torch from torch import nn from torch.nn import functional as F from attention import SelfAttention, CrossAttention class TimeEmbedding(nn.Module): def __init__(self, n_embed): super().__init__() self.linear_1=nn.Linear(n_embed, 4*n_embed) self.linear_2=nn.Linear(4*n_embed, 4*n_embed) def forward(self, x): x=self.linear_1(x) x=F.silu(x) x=self.linear_2(x) return x class UNET_ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, n_time=1280): super().__init__() self.grpnorm_feature=nn.GroupNorm(32, in_channels) self.conv_feature=nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.linear_time=nn.Linear(n_time, out_channels) self.grpnorm_merged=nn.GroupNorm(32, out_channels) self.conv_merged=nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) if in_channels==out_channels: self.residual_layer=nn.Identity() else: self.residual_layer=nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) def forward(self, feature, time): residue=feature feature=self.grpnorm_feature(feature) feature=F.silu(feature) feature=self.conv_feature(feature) time=F.silu(time) time=self.linear_time(time) merged=feature+time.unsqueeze(-1).unsqueeze(-1) merged=self.grpnorm_merged(merged) merged=F.silu(merged) merged=self.conv_merged(merged) return merged + self.residual_layer(residue) class UNET_AttentionBlock(nn.Module): def __init__(self, n_head, n_embed): super().__init__() channels=n_head*n_embed self.grpnorm=nn.GroupNorm(32, channels, eps=1e-6) self.conv_input=nn.Conv2d(channels, channels, kernel_size=1, padding=0) self.layernorm_1=nn.LayerNorm(channels) self.attention_1=SelfAttention(n_head, channels, in_proj_bias=False) self.layernorm_2=nn.LayerNorm(channels) # self.attention_2=CrossAttention(n_head, channels, d_context, in_proj_bias=False) self.layernorm_3=nn.LayerNorm(channels) self.linear_geglu_1=nn.Linear(channels, 4*channels*2) self.linear_geglu_2=nn.Linear(4*channels, channels) self.conv_output=nn.Conv2d(channels, channels, kernel_size=1, padding=0) def forward(self, x): residue_long=x x=self.grpnorm(x) x=self.conv_input(x) n, c, h, w=x.shape x=x.view((n,c,h*w)) x=x.transpose(-1, -2) residue_short=x x=self.layernorm_1(x) x=self.attention_1(x) x+=residue_short residue_short=x x=self.layernorm_2(x) # x=self.attention_2(x, context) x+=residue_short residue_short=x x=self.layernorm_3(x) x, gate=self.linear_geglu_1(x).chunk(2, dim=-1) x=x*F.gelu(gate) x=self.linear_geglu_2(x) x+=residue_short x=x.transpose(-1, -2) x=x.view((n, c, h, w)) return self.conv_output(x)+residue_long class Upsample(nn.Module): def __init__(self, channels): super().__init__() self.conv=nn.Conv2d(channels, channels, kernel_size=3, padding=1) def forward(self, x): x=F.interpolate(x, scale_factor=2, mode='nearest') return self.conv(x) # passing arguments to the parent class nn.Sequential, not to your SwitchSequential class directly — because you did not override the __init__ method in SwitchSequential class SwitchSequential(nn.Sequential): def forward(self, x, time): for layer in self: if isinstance(layer, UNET_AttentionBlock): x=layer(x) elif isinstance(layer, UNET_ResidualBlock): x=layer(x, time) else: x=layer(x) return x class UNET(nn.Module): def __init__(self, in_channels=4): super().__init__() self.encoders=nn.ModuleList([ # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(nn.Conv2d(in_channels, 320, kernel_size=3, padding=1)), # (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)), SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 16, Width / 16) SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 320, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 32, Width / 32) SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 640, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(1280, 1280)), SwitchSequential(UNET_ResidualBlock(1280, 1280)), ]) self.bottleneck = SwitchSequential( # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160), UNET_ResidualBlock(1280, 1280), ) self.decoders = nn.ModuleList([ # (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(2560, 1280)), SwitchSequential(UNET_ResidualBlock(2560, 1280)), # (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)), # (Batch_Size, 2560, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)), SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1920, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)), # (Batch_Size, 1920, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 1280, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 960, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)), # (Batch_Size, 960, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 640, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)), SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)), ]) def forward(self, x, time): # x: (Batch_Size, 4, Height / 8, Width / 8) # context: (Batch_Size, Seq_Len, Dim) # time: (1, 1280) skip_connections = [] for layers in self.encoders: x = layers(x, time) skip_connections.append(x) x = self.bottleneck(x, time) for layers in self.decoders: # Since we always concat with the skip connection of the encoder, the number of features increases before being sent to the decoder's layer x = torch.cat((x, skip_connections.pop()), dim=1) x = layers(x, time) return x class UNET_OutputLayer(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.grpnorm = nn.GroupNorm(32, in_channels) self.conv=nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x): x=self.grpnorm(x) x=F.silu(x) x=self.conv(x) return x class Diffusion(nn.Module): def __init__(self, in_channels=4, out_channels=4): super().__init__() self.time_embedding=TimeEmbedding(320) self.unet=UNET(in_channels) self.final=UNET_OutputLayer(320, out_channels) def forward(self, latent, time): time=self.time_embedding(time) output=self.unet(latent, time) output=self.final(output) return output import torch from torch import nn if __name__ == "__main__": # Input configurations batch_size = 1 in_channels = 9 # Must match UNET input height = 64 # Height / 8 = 64 → original H = 512 width = 64 # Width / 8 = 64 → original W = 512 # Create dummy inputs latent = torch.randn(batch_size, in_channels, height, width) # [1, 4, 64, 64] time = torch.randn(batch_size, 320) # [1, 320] # Initialize model model = Diffusion(in_channels=in_channels, out_channels=4) # Forward pass with torch.no_grad(): output = model(latent, time) # Print input and output shape print("Input latent shape:", latent.shape) print("Time embedding shape:", time.shape) print("Output shape:", output.shape)