File size: 1,459 Bytes
beae064
 
 
f3ce8a7
beae064
f3ce8a7
f36bbe6
beae064
ee19cd7
beae064
f36bbe6
f3ce8a7
 
 
 
beae064
 
 
b8fb185
beae064
 
 
 
f3ce8a7
 
b8fb185
ee19cd7
 
 
 
 
b8fb185
f3ce8a7
 
b8fb185
beae064
 
 
 
 
 
 
 
 
 
 
 
f3ce8a7
beae064
 
 
 
f3ce8a7
 
 
beae064
f3ce8a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
import joblib
import os
import nltk
from transformers import AutoTokenizer
from model_inference import load_model, predict_from_input, download_from_hf

# ✅ Redirect HuggingFace & NLTK cache
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HOME"] = "/tmp/hf_cache"

app = FastAPI(title="Question Difficulty/Discrimination Predictor")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# ✅ Load model on startup
model, device = load_model()

encoder_path = download_from_hf("onehot_encoder.pkl")
scaler_path = download_from_hf("scaler.pkl")

encoder = joblib.load(encoder_path)
scaler = joblib.load(scaler_path)

tok_mcq = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
tok_clin = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")

class QuestionInput(BaseModel):
    StemText: str
    LeadIn: str
    OptionA: str
    OptionB: str
    OptionC: str
    OptionD: str
    DepartmentName: str
    CourseName: str
    BloomLevel: str

@app.get("/health")
def health():
    return {"status": "ok"}

@app.post("/predict")
def predict(input_data: QuestionInput):
    pred = predict_from_input(
        input_data.dict(), model, device,
        tok_mcq, tok_clin, encoder, scaler
    )
    return pred