Spaces:
Sleeping
Sleeping
File size: 1,398 Bytes
beae064 f3ce8a7 beae064 f3ce8a7 beae064 f3ce8a7 beae064 f3ce8a7 beae064 b8fb185 f3ce8a7 beae064 f3ce8a7 b8fb185 f3ce8a7 b8fb185 f3ce8a7 b8fb185 beae064 f3ce8a7 beae064 f3ce8a7 beae064 f3ce8a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
import joblib
import os
from transformers import AutoTokenizer
from model_inference import load_model, predict_from_input
# ✅ FIX: Set Hugging Face cache to a writable directory
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HOME"] = "/tmp/hf_cache"
app = FastAPI(title="Question Difficulty/Discrimination Predictor")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ✅ Load model on startup
model, device = load_model()
encoder = joblib.load("assets/onehot_encoder.pkl")
scaler = joblib.load("assets/scaler.pkl")
tok_mcq = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
tok_clin = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
class QuestionInput(BaseModel):
StemText: str
LeadIn: str
OptionA: str
OptionB: str
OptionC: str
OptionD: str
DepartmentName: str
CourseName: str
BloomLevel: str
@app.get("/health")
def health():
return {"status": "ok"}
@app.post("/predict")
def predict(input_data: QuestionInput):
pred = predict_from_input(
input_data.dict(), model, device,
tok_mcq, tok_clin, encoder, scaler
)
return pred
|