Spaces:
Sleeping
Sleeping
Ahmad Hathim bin Ahmad Azman
commited on
Commit
Β·
8438377
1
Parent(s):
f3ce8a7
fixed pytorch
Browse files- model_inference.py +29 -7
model_inference.py
CHANGED
|
@@ -19,26 +19,48 @@ def ensure_model_file(filename: str):
|
|
| 19 |
return path
|
| 20 |
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
checkpoint = torch.load(path, map_location="cpu")
|
| 24 |
-
|
| 25 |
-
# Recreate
|
| 26 |
model = EnsembleBertBiLSTMRegressor(
|
| 27 |
model_name_mcq="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
|
| 28 |
model_name_clinical="emilyalsentzer/Bio_ClinicalBERT",
|
| 29 |
hidden_dim=768,
|
| 30 |
-
extra_dim=67 #
|
| 31 |
)
|
| 32 |
|
| 33 |
-
# Load
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
|
|
|
| 37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
| 39 |
return model, device
|
| 40 |
|
| 41 |
|
|
|
|
| 42 |
def predict_from_input(data, model, device, tok_mcq, tok_clin, encoder, scaler):
|
| 43 |
"""
|
| 44 |
Predict difficulty and discrimination index for a single MCQ item.
|
|
|
|
| 19 |
return path
|
| 20 |
|
| 21 |
|
| 22 |
+
import os
|
| 23 |
+
import torch
|
| 24 |
+
from model_architecture import EnsembleBertBiLSTMRegressor
|
| 25 |
+
|
| 26 |
+
def load_model(path: str = "assets/best_checkpoint_regression.pt"):
|
| 27 |
+
"""
|
| 28 |
+
Load the trained EnsembleBertBiLSTMRegressor model using saved checkpoint weights.
|
| 29 |
+
Supports CPU/GPU execution.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
if not os.path.exists(path):
|
| 33 |
+
raise FileNotFoundError(f"β Model checkpoint not found at: {path}")
|
| 34 |
+
|
| 35 |
+
print(f"β
Loading model weights from: {path}")
|
| 36 |
checkpoint = torch.load(path, map_location="cpu")
|
| 37 |
+
|
| 38 |
+
# β
Recreate model architecture (must match training exactly!)
|
| 39 |
model = EnsembleBertBiLSTMRegressor(
|
| 40 |
model_name_mcq="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
|
| 41 |
model_name_clinical="emilyalsentzer/Bio_ClinicalBERT",
|
| 42 |
hidden_dim=768,
|
| 43 |
+
extra_dim=67 # Adjust if your engineered features size differs
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# β
Load weights into model
|
| 47 |
+
if "model_state" in checkpoint:
|
| 48 |
+
model.load_state_dict(checkpoint["model_state"])
|
| 49 |
+
elif "state_dict" in checkpoint: # support alternative saving formats
|
| 50 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 51 |
+
else:
|
| 52 |
+
raise KeyError("β No 'model_state' or 'state_dict' found in checkpoint")
|
| 53 |
|
| 54 |
+
# β
Set eval mode and move to device
|
| 55 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 56 |
model.to(device)
|
| 57 |
+
model.eval()
|
| 58 |
+
|
| 59 |
+
print(f"β
Model loaded successfully on device: {device}")
|
| 60 |
return model, device
|
| 61 |
|
| 62 |
|
| 63 |
+
|
| 64 |
def predict_from_input(data, model, device, tok_mcq, tok_clin, encoder, scaler):
|
| 65 |
"""
|
| 66 |
Predict difficulty and discrimination index for a single MCQ item.
|