Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,35 @@
|
|
| 1 |
from flask import Flask, request, jsonify
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
app = Flask(__name__)
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
# Load model
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
)
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
@app.route("/")
|
| 20 |
-
def home():
|
| 21 |
-
return "<h2>π§ Phi-3-mini API is running!</h2><p>POST JSON to <code>/api/ask</code> with {'prompt': 'your question'}</p>"
|
| 22 |
-
|
| 23 |
@app.route("/api/ask", methods=["POST"])
|
| 24 |
def ask():
|
| 25 |
data = request.get_json()
|
| 26 |
prompt = data.get("prompt", "")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
-
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 32 |
outputs = model.generate(
|
| 33 |
**inputs,
|
| 34 |
max_new_tokens=300,
|
|
@@ -37,12 +38,26 @@ def ask():
|
|
| 37 |
do_sample=True
|
| 38 |
)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
response = response.split("<|assistant|>")[-1].strip()
|
| 43 |
-
|
| 44 |
return jsonify({"reply": response})
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
if __name__ == "__main__":
|
| 48 |
app.run(host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
from flask import Flask, request, jsonify
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
+
import requests
|
| 5 |
|
| 6 |
app = Flask(__name__)
|
| 7 |
|
| 8 |
+
# Allow CORS for everything (so TurboWarp can connect)
|
| 9 |
+
from flask_cors import CORS
|
| 10 |
+
CORS(app)
|
| 11 |
|
| 12 |
+
# === Load Phi model ===
|
| 13 |
+
print("π Loading Phi model... this may take a minute.")
|
| 14 |
+
model_name = "microsoft/phi-2"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_name,
|
| 18 |
+
torch_dtype=torch.float16,
|
| 19 |
+
low_cpu_mem_usage=True
|
| 20 |
)
|
| 21 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
print("β
Model loaded!")
|
| 23 |
|
| 24 |
+
# === Main API ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
@app.route("/api/ask", methods=["POST"])
|
| 26 |
def ask():
|
| 27 |
data = request.get_json()
|
| 28 |
prompt = data.get("prompt", "")
|
| 29 |
|
| 30 |
+
chat_prompt = f"### Instruction:\nYou are Acla, a helpful AI powered by phi-3 mini that can reason about math, code, and logic.\n\n### Input:\n{prompt}\n\n### Response:"
|
| 31 |
+
inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device)
|
| 32 |
|
|
|
|
| 33 |
outputs = model.generate(
|
| 34 |
**inputs,
|
| 35 |
max_new_tokens=300,
|
|
|
|
| 38 |
do_sample=True
|
| 39 |
)
|
| 40 |
|
| 41 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
+
response = text.split("### Response:")[-1].strip()
|
|
|
|
|
|
|
| 43 |
return jsonify({"reply": response})
|
| 44 |
|
| 45 |
|
| 46 |
+
# === Proxy endpoint ===
|
| 47 |
+
@app.route("/proxy", methods=["POST"])
|
| 48 |
+
def proxy():
|
| 49 |
+
"""Forward TurboWarp requests to /api/ask internally."""
|
| 50 |
+
try:
|
| 51 |
+
data = request.get_json()
|
| 52 |
+
r = requests.post("http://localhost:7860/api/ask", json=data)
|
| 53 |
+
return jsonify(r.json())
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return jsonify({"error": str(e)}), 500
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.route("/")
|
| 59 |
+
def home():
|
| 60 |
+
return "π§ Phi-2 Chatbot + Proxy running! Send POST to /proxy or /api/ask"
|
| 61 |
+
|
| 62 |
if __name__ == "__main__":
|
| 63 |
app.run(host="0.0.0.0", port=7860)
|