Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,15 +4,14 @@ import torch
|
|
| 4 |
|
| 5 |
app = Flask(__name__)
|
| 6 |
|
| 7 |
-
# Load the Phi-3 model
|
| 8 |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
| 9 |
-
print("π Loading model...
|
| 10 |
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
MODEL_NAME,
|
| 14 |
-
|
| 15 |
-
device_map="auto"
|
| 16 |
)
|
| 17 |
|
| 18 |
print("β
Model loaded successfully!")
|
|
@@ -26,8 +25,8 @@ def ask():
|
|
| 26 |
data = request.get_json()
|
| 27 |
prompt = data.get("prompt", "")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
full_prompt = f"<|system|>\nYou are Acla, a smart and
|
| 31 |
|
| 32 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 33 |
outputs = model.generate(
|
|
@@ -39,8 +38,6 @@ def ask():
|
|
| 39 |
)
|
| 40 |
|
| 41 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
-
|
| 43 |
-
# Clean up: only return assistant's reply
|
| 44 |
if "<|assistant|>" in response:
|
| 45 |
response = response.split("<|assistant|>")[-1].strip()
|
| 46 |
|
|
|
|
| 4 |
|
| 5 |
app = Flask(__name__)
|
| 6 |
|
|
|
|
| 7 |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
| 8 |
+
print("π Loading Phi-3-mini model...")
|
| 9 |
|
| 10 |
+
# Load model and tokenizer
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
MODEL_NAME,
|
| 14 |
+
device_map="auto" # works fine if accelerate is installed
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
print("β
Model loaded successfully!")
|
|
|
|
| 25 |
data = request.get_json()
|
| 26 |
prompt = data.get("prompt", "")
|
| 27 |
|
| 28 |
+
# build prompt
|
| 29 |
+
full_prompt = f"<|system|>\nYou are Acla, a smart and helpful assistant.\n<|user|>\n{prompt}\n<|assistant|>"
|
| 30 |
|
| 31 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 32 |
outputs = model.generate(
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 41 |
if "<|assistant|>" in response:
|
| 42 |
response = response.split("<|assistant|>")[-1].strip()
|
| 43 |
|