help2opensource commited on
Commit
474fd08
·
1 Parent(s): 65c0f47

Update space

Browse files
Files changed (2) hide show
  1. app.py +71 -69
  2. requirements.txt +6 -0
app.py CHANGED
@@ -1,70 +1,72 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from peft import PeftModel
4
  import gradio as gr
5
+
6
+ # -------------------------
7
+ # Base + Adapter configuration
8
+ # -------------------------
9
+
10
+ base_model_name = "Qwen/Qwen3-4B-Instruct-2507"
11
+ adapter_model_name = "help2opensource/Qwen3-4B-Instruct-2507_mental_health_therapy"
12
+
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+
15
+ # -------------------------
16
+ # Load base model and tokenizer
17
+ # -------------------------
18
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
19
+ base_model = AutoModelForCausalLM.from_pretrained(
20
+ base_model_name,
21
+ torch_dtype=torch.float16 if device == "cuda" else torch.float32,
22
+ ).to(device)
23
+
24
+ # -------------------------
25
+ # Load LoRA adapter
26
+ # -------------------------
27
+ model = PeftModel.from_pretrained(base_model, adapter_model_name)
28
+
29
+ # Optional: merge LoRA weights for faster inference
30
+ model = model.merge_and_unload()
31
+
32
+
33
+ def predict(message, history):
34
+ # Ensure history format is consistent
35
+ messages = history + [{"role": "user", "content": message}]
36
+
37
+ # Apply chat template correctly
38
+ try:
39
+ input_text = tokenizer.apply_chat_template(
40
+ messages, tokenize=False, add_generation_prompt=True
41
+ )
42
+ except TypeError:
43
+ # For older tokenizers that don't support add_generation_prompt
44
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
45
+
46
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
47
+
48
+ with torch.no_grad():
49
+ outputs = model.generate(
50
+ **inputs,
51
+ max_new_tokens=1024,
52
+ temperature=0.7,
53
+ top_p=0.9,
54
+ do_sample=True,
55
+ )
56
+
57
+ decoded = tokenizer.decode(outputs[0], skip_special_tokens=False)
58
+
59
+ # Extract only the assistant’s final response
60
+ if "<|im_start|>assistant" in decoded:
61
+ response = (
62
+ decoded.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip()
63
+ )
64
+ else:
65
+ response = decoded
66
+
67
+ return response
68
+
69
+
70
+ demo = gr.ChatInterface(predict, type="messages")
71
+
72
+ demo.launch()
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers>=4.42.0
2
+ torch>=2.1.0
3
+ accelerate>=0.29.0
4
+ peft>=0.10.0
5
+ bitsandbytes>=0.42.0
6
+ gradio>=4.0