import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import gradio as gr # ------------------------- # Base + Adapter configuration # ------------------------- base_model_name = "Qwen/Qwen3-4B-Instruct-2507" adapter_model_name = "help2opensource/Qwen3-4B-Instruct-2507_mental_health_therapy" device = "cuda" if torch.cuda.is_available() else "cpu" # ------------------------- # Load base model and tokenizer # ------------------------- tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16 if device == "cuda" else torch.float32, ).to(device) # ------------------------- # Load LoRA adapter # ------------------------- model = PeftModel.from_pretrained(base_model, adapter_model_name) # Optional: merge LoRA weights for faster inference model = model.merge_and_unload() def predict(message, history): # Ensure history format is consistent messages = history + [{"role": "user", "content": message}] # Apply chat template correctly try: input_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except TypeError: # For older tokenizers that don't support add_generation_prompt input_text = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(input_text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=1024, temperature=0.7, top_p=0.9, do_sample=True, ) decoded = tokenizer.decode(outputs[0], skip_special_tokens=False) # Extract only the assistant’s final response if "<|im_start|>assistant" in decoded: response = ( decoded.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip() ) else: response = decoded return response demo = gr.ChatInterface(predict, type="messages") demo.launch()