Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModel | |
| import torch | |
| tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large') | |
| model = AutoModel.from_pretrained('intfloat/multilingual-e5-large') | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| def encode_sentences(sentences): | |
| encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
| return sentence_embeddings.tolist() | |
| demo = gr.Interface(fn=encode_sentences, | |
| inputs="textbox", | |
| outputs="text") | |
| if __name__ == "__main__": | |
| demo.launch() |