æLtorio
commited on
add decriptions
Browse files
app.py
CHANGED
|
@@ -1,41 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, image_utils
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 5 |
-
print(f"Using device: {device}")
|
| 6 |
-
|
| 7 |
-
# model
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
|
|
|
|
|
|
|
| 10 |
model = Idefics3ForConditionalGeneration.from_pretrained(
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
model
|
|
|
|
| 15 |
|
|
|
|
| 16 |
def infere(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
messages = [
|
| 18 |
{
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
},
|
| 24 |
-
{
|
| 25 |
-
"role": "user",
|
| 26 |
-
"content": [
|
| 27 |
-
{"type": "image"},
|
| 28 |
-
{"type": "text", "text": "What do we see in this image?"},
|
| 29 |
-
]
|
| 30 |
-
},
|
| 31 |
]
|
|
|
|
|
|
|
| 32 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
|
|
|
| 33 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 34 |
-
|
|
|
|
| 35 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
|
|
|
| 36 |
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
|
|
|
| 37 |
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
| 38 |
return generated_texts
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
radiotest.launch(share=True)
|
|
|
|
| 1 |
+
# Copyright 2024 Ronan Le Meillat
|
| 2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 3 |
+
# you may not use this file except in compliance with the License.
|
| 4 |
+
# You may obtain a copy of the License at
|
| 5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 6 |
+
# Import necessary libraries
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, image_utils
|
| 9 |
import torch
|
| 10 |
+
|
| 11 |
+
# Determine the device (GPU or CPU) to run the model on
|
| 12 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 13 |
+
print(f"Using device: {device}") # Log the device being used
|
| 14 |
+
|
| 15 |
+
# Define the model ID and base model path
|
| 16 |
+
model_id = "eltorio/IDEFICS3_ROCO"
|
| 17 |
+
base_model_path = "HuggingFaceM4/Idefics3-8B-Llama3" # or change to local path
|
| 18 |
+
|
| 19 |
+
# Initialize the processor from the base model path
|
| 20 |
processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
|
| 21 |
+
|
| 22 |
+
# Initialize the model from the base model path and set the torch dtype to bfloat16
|
| 23 |
model = Idefics3ForConditionalGeneration.from_pretrained(
|
| 24 |
+
base_model_path, torch_dtype=torch.bfloat16
|
| 25 |
+
).to(device) # Move the model to the specified device
|
| 26 |
|
| 27 |
+
# Load the adapter from the model ID and automatically map it to the device
|
| 28 |
+
model.load_adapter(model_id, device_map="auto")
|
| 29 |
|
| 30 |
+
# Define a function to infer a description from an image
|
| 31 |
def infere(image):
|
| 32 |
+
"""
|
| 33 |
+
Generate a description of a medical image.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
- image (PIL Image): The medical image to describe.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
- generated_texts (List[str]): A list containing the generated description.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
# Define a chat template for the model to respond to
|
| 43 |
messages = [
|
| 44 |
{
|
| 45 |
+
"role": "system",
|
| 46 |
+
"content": [
|
| 47 |
+
{"type": "text", "text": "You are a valuable medical doctor and you are looking at an image of your patient."},
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"role": "user",
|
| 52 |
+
"content": [
|
| 53 |
+
{"type": "image"},
|
| 54 |
+
{"type": "text", "text": "What do we see in this image?"},
|
| 55 |
+
]
|
| 56 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
]
|
| 58 |
+
|
| 59 |
+
# Apply the chat template and add a generation prompt
|
| 60 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 61 |
+
|
| 62 |
+
# Preprocess the input image and text
|
| 63 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 64 |
+
|
| 65 |
+
# Move the inputs to the specified device
|
| 66 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 67 |
+
|
| 68 |
+
# Generate a description with the model
|
| 69 |
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
| 70 |
+
|
| 71 |
+
# Decode the generated IDs into text
|
| 72 |
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 73 |
+
|
| 74 |
return generated_texts
|
| 75 |
|
| 76 |
+
# Define the title, description, and device description for the Gradio interface
|
| 77 |
+
title = f"<a href='https://huggingface.co/eltorio/IDEFICS3_ROCO'>IDEFICS3_ROCO</a>: Medical Image to Text <b>running on {device}</b>"
|
| 78 |
+
desc = "This model generates a description of a medical image."
|
| 79 |
+
|
| 80 |
+
device_desc = f"This model is running on {device} 🚀." if device == torch.device('cuda') else f"🐢 This model is running on {device} it will be very (very) slow. If you can donate some GPU time it will be usable 🐢. <a href='https://huggingface.co/eltorio/IDEFICS3_ROCO/discussions'>Please contact us.</a>"
|
| 81 |
+
|
| 82 |
+
# Define the long description for the Gradio interface
|
| 83 |
+
long_desc = f"This model is based on the <a href='https://huggingface.co/eltorio/IDEFICS3_ROCO'>IDEFICS3_ROCO model</a>, which is a multimodal model that can generate text from images. It has been fine-tuned on <a href='https://huggingface.co/datasets/eltorio/ROCO-radiology'>eltorio/ROCO-radiology</a> a dataset of medical images and can generate descriptions of medical images. Try uploading an image of a medical image and see what the model generates!<br><b>{device_desc}</b><br> 2024 - Ronan Le Meillat"
|
| 84 |
+
|
| 85 |
+
# Create a Gradio interface with the infere function and specified title and descriptions
|
| 86 |
+
radiotest = gr.Interface(fn=infere, inputs="image", outputs="text", title=title,
|
| 87 |
+
description=desc, article=long_desc)
|
| 88 |
+
|
| 89 |
+
# Launch the Gradio interface and share it
|
| 90 |
radiotest.launch(share=True)
|