Spaces:
Running
Running
| import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io | |
| from io import BytesIO | |
| from itertools import chain | |
| from PIL import Image | |
| from datetime import datetime | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from flask import Flask, request, jsonify, Response, stream_with_context, render_template # Import render_template | |
| from werkzeug.middleware.proxy_fix import ProxyFix | |
| from requests.adapters import HTTPAdapter | |
| from requests.packages.urllib3.util.retry import Retry | |
| os.environ['TZ'] = 'Asia/Shanghai' | |
| time.tzset() | |
| logging.basicConfig(level=logging.INFO, | |
| format='%(asctime)s - %(levelname)s - %(message)s') | |
| API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info" | |
| TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions" | |
| MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models" | |
| EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings" | |
| IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations" | |
| def requests_session_with_retries( | |
| retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504) | |
| ): | |
| session = requests.Session() | |
| retry = Retry( | |
| total=retries, | |
| read=retries, | |
| connect=retries, | |
| backoff_factor=backoff_factor, | |
| status_forcelist=status_forcelist, | |
| ) | |
| adapter = HTTPAdapter( | |
| max_retries=retry, | |
| pool_connections=1000, | |
| pool_maxsize=10000, | |
| pool_block=False | |
| ) | |
| session.mount("http://", adapter) | |
| session.mount("https://", adapter) | |
| return session | |
| session = requests_session_with_retries() | |
| app = Flask(__name__) | |
| app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1) | |
| models = { | |
| "text": [], | |
| "free_text": [], | |
| "embedding": [], | |
| "free_embedding": [], | |
| "image": [], | |
| "free_image": [] | |
| } | |
| key_status = { | |
| "invalid": [], | |
| "free": [], | |
| "unverified": [], | |
| "valid": [] | |
| } | |
| executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000) | |
| model_key_indices = {} | |
| request_timestamps = [] | |
| token_counts = [] | |
| request_timestamps_day = [] | |
| token_counts_day = [] | |
| data_lock = threading.Lock() | |
| def get_credit_summary(api_key): | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| max_retries = 3 | |
| for attempt in range(max_retries): | |
| try: | |
| response = session.get(API_ENDPOINT, headers=headers, timeout=2) | |
| response.raise_for_status() | |
| data = response.json().get("data", {}) | |
| total_balance = data.get("totalBalance", 0) | |
| logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}") | |
| return {"total_balance": float(total_balance)} | |
| except requests.exceptions.Timeout as e: | |
| logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)") | |
| if attempt >= max_retries - 1: | |
| logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)") | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}") | |
| return None | |
| FREE_MODEL_TEST_KEY = ( | |
| "sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw" | |
| ) | |
| FREE_IMAGE_LIST = [ | |
| "stabilityai/stable-diffusion-3-5-large", | |
| "black-forest-labs/FLUX.1-schnell", | |
| "stabilityai/stable-diffusion-3-medium", | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| "stabilityai/stable-diffusion-2-1" | |
| ] | |
| def test_model_availability(api_key, model_name, model_type="chat"): | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| if model_type == "image": | |
| return model_name in FREE_IMAGE_LIST | |
| try: | |
| endpoint = EMBEDDINGS_ENDPOINT if model_type == "embedding" else TEST_MODEL_ENDPOINT | |
| payload = ( | |
| {"model": model_name, "input": ["hi"]} | |
| if model_type == "embedding" | |
| else {"model": model_name, "messages": [{"role": "user", "content": "hi"}], "max_tokens": 5, "stream": False} | |
| ) | |
| timeout = 10 if model_type == "embedding" else 5 | |
| response = session.post( | |
| endpoint, | |
| headers=headers, | |
| json=payload, | |
| timeout=timeout | |
| ) | |
| return response.status_code in [200, 429] | |
| except requests.exceptions.RequestException as e: | |
| logging.error( | |
| f"测试{model_type}模型 {model_name} 可用性失败," | |
| f"API Key:{api_key},错误信息:{e}" | |
| ) | |
| return False | |
| def process_image_url(image_url, response_format=None): | |
| if not image_url: | |
| return {"url": ""} | |
| if response_format == "b64_json": | |
| try: | |
| response = session.get(image_url, stream=True) | |
| response.raise_for_status() | |
| image = Image.open(response.raw) | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode() | |
| return {"b64_json": img_str} | |
| except Exception as e: | |
| logging.error(f"图片转base64失败: {e}") | |
| return {"url": image_url} | |
| return {"url": image_url} | |
| def create_base64_markdown_image(image_url): | |
| try: | |
| response = session.get(image_url, stream=True) | |
| response.raise_for_status() | |
| image = Image.open(BytesIO(response.content)) | |
| new_size = tuple(dim // 4 for dim in image.size) | |
| resized_image = image.resize(new_size, Image.LANCZOS) | |
| buffered = BytesIO() | |
| resized_image.save(buffered, format="PNG") | |
| base64_encoded = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
| markdown_image_link = f"" | |
| logging.info("Created base64 markdown image link.") | |
| return markdown_image_link | |
| except Exception as e: | |
| logging.error(f"Error creating markdown image: {e}") | |
| return None | |
| def extract_user_content(messages): | |
| user_content = "" | |
| for message in messages: | |
| if message["role"] == "user": | |
| if isinstance(message["content"], str): | |
| user_content += message["content"] + " " | |
| elif isinstance(message["content"], list): | |
| for item in message["content"]: | |
| if isinstance(item, dict) and item.get("type") == "text": | |
| user_content += item.get("text", "") + " " | |
| return user_content.strip() | |
| def get_siliconflow_data(model_name, data): | |
| siliconflow_data = { | |
| "model": model_name, | |
| "prompt": data.get("prompt") or "", | |
| } | |
| if model_name == "black-forest-labs/FLUX.1-pro": | |
| siliconflow_data.update({ | |
| "width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)), | |
| "height": max(256, min(1440, (data.get("height", 768) // 32) * 32)), | |
| "prompt_upsampling": data.get("prompt_upsampling", False), | |
| "image_prompt": data.get("image_prompt"), | |
| "steps": max(1, min(50, data.get("steps", 20))), | |
| "guidance": max(1.5, min(5, data.get("guidance", 3))), | |
| "safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))), | |
| "interval": max(1, min(4, data.get("interval", 2))), | |
| "output_format": data.get("output_format", "png") | |
| }) | |
| seed = data.get("seed") | |
| if isinstance(seed, int) and 0 < seed < 9999999999: | |
| siliconflow_data["seed"] = seed | |
| else: | |
| siliconflow_data.update({ | |
| "image_size": data.get("image_size", "1024x1024"), | |
| "prompt_enhancement": data.get("prompt_enhancement", False) | |
| }) | |
| seed = data.get("seed") | |
| if isinstance(seed, int) and 0 < seed < 9999999999: | |
| siliconflow_data["seed"] = seed | |
| if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]: | |
| siliconflow_data.update({ | |
| "batch_size": max(1, min(4, data.get("n", 1))), | |
| "num_inference_steps": max(1, min(50, data.get("steps", 20))), | |
| "guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))), | |
| "negative_prompt": data.get("negative_prompt") | |
| }) | |
| valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"] | |
| if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes: | |
| siliconflow_data["image_size"] = "1024x1024" | |
| return siliconflow_data | |
| def refresh_models(): | |
| global models | |
| models["text"] = get_all_models(FREE_MODEL_TEST_KEY, "chat") | |
| models["embedding"] = get_all_models(FREE_MODEL_TEST_KEY, "embedding") | |
| models["image"] = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image") | |
| models["free_text"] = [] | |
| models["free_embedding"] = [] | |
| models["free_image"] = [] | |
| ban_models = [] | |
| ban_models_str = os.environ.get("BAN_MODELS") | |
| if ban_models_str: | |
| try: | |
| ban_models = json.loads(ban_models_str) | |
| if not isinstance(ban_models, list): | |
| logging.warning("环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。") | |
| ban_models = [] | |
| except json.JSONDecodeError: | |
| logging.warning("环境变量 BAN_MODELS JSON 解析失败,请检查格式。") | |
| models["text"] = [model for model in models["text"] if model not in ban_models] | |
| models["embedding"] = [model for model in models["embedding"] if model not in ban_models] | |
| models["image"] = [model for model in models["image"] if model not in ban_models] | |
| model_types = [ | |
| ("text", "chat"), | |
| ("embedding", "embedding"), | |
| ("image", "image") | |
| ] | |
| for model_type, test_type in model_types: | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor: | |
| future_to_model = { | |
| executor.submit( | |
| test_model_availability, | |
| FREE_MODEL_TEST_KEY, | |
| model, | |
| test_type | |
| ): model for model in models[model_type] | |
| } | |
| for future in concurrent.futures.as_completed(future_to_model): | |
| model = future_to_model[future] | |
| try: | |
| is_free = future.result() | |
| if is_free: | |
| models[f"free_{model_type}"].append(model) | |
| except Exception as exc: | |
| logging.error(f"{model_type}模型 {model} 测试生成异常: {exc}") | |
| for model_type in ["text", "embedding", "image"]: | |
| logging.info(f"所有{model_type}模型列表:{models[model_type]}") | |
| logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}") | |
| def load_keys(): | |
| global key_status | |
| for status in key_status: | |
| key_status[status] = [] | |
| keys_str = os.environ.get("KEYS") | |
| if not keys_str: | |
| logging.warning("环境变量 KEYS 未设置。") | |
| return | |
| test_model = os.environ.get("TEST_MODEL", "Pro/google/gemma-2-9b-it") | |
| unique_keys = list(set(key.strip() for key in keys_str.split(','))) | |
| os.environ["KEYS"] = ','.join(unique_keys) | |
| logging.info(f"加载的 keys:{unique_keys}") | |
| def process_key_with_logging(key): | |
| try: | |
| key_type = process_key(key, test_model) | |
| if key_type in key_status: | |
| key_status[key_type].append(key) | |
| return key_type | |
| except Exception as exc: | |
| logging.error(f"处理 KEY {key} 生成异常: {exc}") | |
| return "invalid" | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor: | |
| futures = [executor.submit(process_key_with_logging, key) for key in unique_keys] | |
| concurrent.futures.wait(futures) | |
| for status, keys in key_status.items(): | |
| logging.info(f"{status.capitalize()} KEYS: {keys}") | |
| global invalid_keys_global, free_keys_global, unverified_keys_global, valid_keys_global | |
| invalid_keys_global = key_status["invalid"] | |
| free_keys_global = key_status["free"] | |
| unverified_keys_global = key_status["unverified"] | |
| valid_keys_global = key_status["valid"] | |
| def process_key(key, test_model): | |
| credit_summary = get_credit_summary(key) | |
| if credit_summary is None: | |
| return "invalid" | |
| else: | |
| total_balance = credit_summary.get("total_balance", 0) | |
| if total_balance <= 0.03: | |
| return "free" | |
| else: | |
| if test_model_availability(key, test_model): | |
| return "valid" | |
| else: | |
| return "unverified" | |
| def get_all_models(api_key, sub_type): | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| try: | |
| response = session.get( | |
| MODELS_ENDPOINT, | |
| headers=headers, | |
| params={"sub_type": sub_type} | |
| ) | |
| response.raise_for_status() | |
| data = response.json() | |
| if ( | |
| isinstance(data, dict) and | |
| 'data' in data and | |
| isinstance(data['data'], list) | |
| ): | |
| return [ | |
| model.get("id") for model in data["data"] | |
| if isinstance(model, dict) and "id" in model | |
| ] | |
| else: | |
| logging.error("获取模型列表失败:响应数据格式不正确") | |
| return [] | |
| except requests.exceptions.RequestException as e: | |
| logging.error( | |
| f"获取模型列表失败," | |
| f"API Key:{api_key},错误信息:{e}" | |
| ) | |
| return [] | |
| except (KeyError, TypeError) as e: | |
| logging.error( | |
| f"解析模型列表失败," | |
| f"API Key:{api_key},错误信息:{e}" | |
| ) | |
| return [] | |
| def determine_request_type(model_name, model_list, free_model_list): | |
| if model_name in free_model_list: | |
| return "free" | |
| elif model_name in model_list: | |
| return "paid" | |
| else: | |
| return "unknown" | |
| def select_key(request_type, model_name): | |
| if request_type == "free": | |
| available_keys = ( | |
| free_keys_global + | |
| unverified_keys_global + | |
| valid_keys_global | |
| ) | |
| elif request_type == "paid": | |
| available_keys = unverified_keys_global + valid_keys_global | |
| else: | |
| available_keys = ( | |
| free_keys_global + | |
| unverified_keys_global + | |
| valid_keys_global | |
| ) | |
| if not available_keys: | |
| return None | |
| current_index = model_key_indices.get(model_name, 0) | |
| for _ in range(len(available_keys)): # Corrected line: _in changed to _ | |
| key = available_keys[current_index % len(available_keys)] | |
| current_index += 1 | |
| if key_is_valid(key, request_type): | |
| model_key_indices[model_name] = current_index | |
| return key | |
| else: | |
| logging.warning( | |
| f"KEY {key} 无效或达到限制,尝试下一个 KEY" | |
| ) | |
| model_key_indices[model_name] = 0 | |
| return None | |
| def key_is_valid(key, request_type): | |
| if request_type == "invalid": | |
| return False | |
| credit_summary = get_credit_summary(key) | |
| if credit_summary is None: | |
| return False | |
| total_balance = credit_summary.get("total_balance", 0) | |
| if request_type == "free": | |
| return True | |
| elif request_type == "paid" or request_type == "unverified": #Fixed typo here | |
| return total_balance > 0 | |
| else: | |
| return False | |
| def check_authorization(request): | |
| authorization_key = os.environ.get("AUTHORIZATION_KEY") | |
| if not authorization_key: | |
| logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。") | |
| return True | |
| auth_header = request.headers.get('Authorization') | |
| if not auth_header: | |
| logging.warning("请求头中缺少 Authorization 字段。") | |
| return False | |
| if auth_header != f"Bearer {authorization_key}": | |
| logging.warning(f"无效的 Authorization 密钥:{auth_header}") | |
| return False | |
| return True | |
| def obfuscate_key(key): | |
| if not key: | |
| return "****" | |
| prefix_length = 6 | |
| suffix_length = 4 | |
| if len(key) <= prefix_length + suffix_length: | |
| return "****" # If key is too short, just mask it all | |
| prefix = key[:prefix_length] | |
| suffix = key[-suffix_length:] | |
| masked_part = "*" * (len(key) - prefix_length - suffix_length) | |
| return prefix + masked_part + suffix | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(load_keys, 'interval', hours=1) | |
| scheduler.remove_all_jobs() | |
| scheduler.add_job(refresh_models, 'interval', hours=1) | |
| def index(): | |
| current_time = time.time() | |
| one_minute_ago = current_time - 60 | |
| one_day_ago = current_time - 86400 | |
| with data_lock: | |
| while request_timestamps and request_timestamps[0] < one_minute_ago: | |
| request_timestamps.pop(0) | |
| token_counts.pop(0) | |
| rpm = len(request_timestamps) | |
| tpm = sum(token_counts) | |
| with data_lock: | |
| while request_timestamps_day and request_timestamps_day[0] < one_day_ago: | |
| request_timestamps_day.pop(0) | |
| token_counts_day.pop(0) | |
| rpd = len(request_timestamps_day) | |
| tpd = sum(token_counts_day) | |
| key_balances = [] | |
| all_keys = list(chain(*key_status.values())) # Get all keys from all statuses | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor: | |
| future_to_key = {executor.submit(get_credit_summary, key): key for key in all_keys} | |
| for future in concurrent.futures.as_completed(future_to_key): | |
| key = future_to_key[future] | |
| try: | |
| credit_summary = future.result() | |
| balance = credit_summary.get("total_balance") if credit_summary else "获取失败" | |
| key_balances.append({"key": obfuscate_key(key), "balance": balance}) | |
| except Exception as exc: | |
| logging.error(f"获取 KEY {obfuscate_key(key)} 余额信息失败: {exc}") | |
| key_balances.append({"key": obfuscate_key(key), "balance": "获取失败"}) | |
| return render_template('index.html', rpm=rpm, tpm=tpm, rpd=rpd, tpd=tpd, key_balances=key_balances) # Render template instead of jsonify | |
| def list_models(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| detailed_models = [] | |
| all_models = chain( | |
| models["text"], | |
| models["embedding"], | |
| models["image"] | |
| ) | |
| for model in all_models: | |
| model_data = { | |
| "id": model, | |
| "object": "model", | |
| "created": 1678888888, | |
| "owned_by": "openai", | |
| "permission": [], | |
| "root": model, | |
| "parent": None | |
| } | |
| detailed_models.append(model_data) | |
| if "DeepSeek-R1" in model: | |
| detailed_models.append({ | |
| "id": model + "-thinking", | |
| "object": "model", | |
| "created": 1678888888, | |
| "owned_by": "openai", | |
| "permission": [], | |
| "root": model + "-thinking", | |
| "parent": None | |
| }) | |
| detailed_models.append({ | |
| "id": model + "-openwebui", | |
| "object": "model", | |
| "created": 1678888888, | |
| "owned_by": "openai", | |
| "permission": [], | |
| "root": model + "-openwebui", | |
| "parent": None | |
| }) | |
| return jsonify({ | |
| "success": True, | |
| "data": detailed_models | |
| }) | |
| def billing_usage(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| daily_usage = [] | |
| return jsonify({ | |
| "object": "list", | |
| "data": daily_usage, | |
| "total_usage": 0 | |
| }) | |
| def billing_subscription(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| keys = valid_keys_global + unverified_keys_global | |
| total_balance = 0 | |
| with concurrent.futures.ThreadPoolExecutor( | |
| max_workers=10000 | |
| ) as executor: | |
| futures = [ | |
| executor.submit(get_credit_summary, key) for key in keys | |
| ] | |
| for future in concurrent.futures.as_completed(futures): | |
| try: | |
| credit_summary = future.result() | |
| if credit_summary: | |
| total_balance += credit_summary.get("total_balance", 0) | |
| except Exception as exc: | |
| logging.error(f"获取额度信息生成异常: {exc}") | |
| return jsonify({ | |
| "object": "billing_subscription", | |
| "access_until": int(datetime(9999, 12, 31).timestamp()), | |
| "soft_limit": 0, | |
| "hard_limit": total_balance, | |
| "system_hard_limit": total_balance, | |
| "soft_limit_usd": 0, | |
| "hard_limit_usd": total_balance, | |
| "system_hard_limit_usd": total_balance | |
| }) | |
| def handsome_embeddings(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| data = request.get_json() | |
| if not data or 'model' not in data: | |
| return jsonify({"error": "Invalid request data"}), 400 | |
| if data['model'] not in models["embedding"]: | |
| return jsonify({"error": "Invalid model"}), 400 | |
| model_name = data['model'] | |
| request_type = determine_request_type( | |
| model_name, | |
| models["embedding"], | |
| models["free_embedding"] | |
| ) | |
| api_key = select_key(request_type, model_name) | |
| if not api_key: | |
| return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429 | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| try: | |
| start_time = time.time() | |
| response = requests.post( | |
| EMBEDDINGS_ENDPOINT, | |
| headers=headers, | |
| json=data, | |
| timeout=120 | |
| ) | |
| if response.status_code == 429: | |
| return jsonify(response.json()), 429 | |
| response.raise_for_status() | |
| end_time = time.time() | |
| response_json = response.json() | |
| total_time = end_time - start_time | |
| try: | |
| prompt_tokens = response_json["usage"]["prompt_tokens"] | |
| embedding_data = response_json["data"] | |
| except (KeyError, ValueError, IndexError) as e: | |
| logging.error( | |
| f"解析响应 JSON 失败: {e}, " | |
| f"完整内容: {response_json}" | |
| ) | |
| prompt_tokens = 0 | |
| embedding_data = [] | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(prompt_tokens) | |
| request_timestamps_day.append(time.time()) | |
| token_counts_day.append(prompt_tokens) | |
| return jsonify({ | |
| "object": "list", | |
| "data": embedding_data, | |
| "model": model_name, | |
| "usage": { | |
| "prompt_tokens": prompt_tokens, | |
| "total_tokens": prompt_tokens | |
| } | |
| }) | |
| except requests.exceptions.RequestException as e: | |
| return jsonify({"error": str(e)}), 500 | |
| def handsome_images_generations(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| data = request.get_json() | |
| if not data or 'model' not in data: | |
| return jsonify({"error": "Invalid request data"}), 400 | |
| if data['model'] not in models["image"]: | |
| return jsonify({"error": "Invalid model"}), 400 | |
| model_name = data.get('model') | |
| request_type = determine_request_type( | |
| model_name, | |
| models["image"], | |
| models["free_image"] | |
| ) | |
| api_key = select_key(request_type, model_name) | |
| if not api_key: | |
| return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429 | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| response_data = {} | |
| if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]: | |
| siliconflow_data = get_siliconflow_data(model_name, data) | |
| try: | |
| start_time = time.time() | |
| response = requests.post( | |
| IMAGE_ENDPOINT, | |
| headers=headers, | |
| json=siliconflow_data, | |
| timeout=120 | |
| ) | |
| if response.status_code == 429: | |
| return jsonify(response.json()), 429 | |
| response.raise_for_status() | |
| end_time = time.time() | |
| response_json = response.json() | |
| total_time = end_time - start_time | |
| try: | |
| images = response_json.get("images", []) | |
| openai_images = [] | |
| for item in images: | |
| if isinstance(item, dict) and "url" in item: | |
| image_url = item["url"] | |
| print(f"image_url: {image_url}") | |
| if data.get("response_format") == "b64_json": | |
| try: | |
| image_data = session.get(image_url, stream=True).raw | |
| image = Image.open(image_data) | |
| buffered = io.BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode() | |
| openai_images.append({"b64_json": img_str}) | |
| except Exception as e: | |
| logging.error(f"图片转base64失败: {e}") | |
| openai_images.append({"url": image_url}) | |
| else: | |
| openai_images.append({"url": image_url}) | |
| else: | |
| logging.error(f"无效的图片数据: {item}") | |
| openai_images.append({"url": item}) | |
| response_data = { | |
| "created": int(time.time()), | |
| "data": openai_images | |
| } | |
| except (KeyError, ValueError, IndexError) as e: | |
| logging.error( | |
| f"解析响应 JSON 失败: {e}, " | |
| f"完整内容: {response_json}" | |
| ) | |
| response_data = { | |
| "created": int(time.time()), | |
| "data": [] | |
| } | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(0) | |
| request_timestamps_day.append(time.time()) | |
| token_counts_day.append(0) | |
| return jsonify(response_data) | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"请求转发异常: {e}") | |
| return jsonify({"error": str(e)}), 500 | |
| else: | |
| return jsonify({"error": "Unsupported model"}), 400 | |
| def handsome_chat_completions(): | |
| if not check_authorization(request): | |
| return jsonify({"error": "Unauthorized"}), 401 | |
| data = request.get_json() | |
| if not data or 'model' not in data: | |
| return jsonify({"error": "Invalid request data"}), 400 | |
| model_name = data['model'] | |
| if model_name not in models["text"] and model_name not in models["image"]: | |
| if "DeepSeek-R1" in model_name and (model_name.endswith("-openwebui") or model_name.endswith("-thinking")): | |
| pass | |
| else: | |
| return jsonify({"error": "Invalid model"}), 400 | |
| model_realname = model_name.replace("-thinking", "").replace("-openwebui", "") | |
| request_type = determine_request_type( | |
| model_realname, | |
| models["text"] + models["image"], | |
| models["free_text"] + models["free_image"] | |
| ) | |
| api_key = select_key(request_type, model_name) | |
| if not api_key: | |
| return jsonify( | |
| { | |
| "error": ( | |
| "No available API key for this " | |
| "request type or all keys have " | |
| "reached their limits" | |
| ) | |
| } | |
| ), 429 | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| if "DeepSeek-R1" in model_name and ("thinking" in model_name or "openwebui" in model_name): | |
| data['model'] = model_realname | |
| start_time = time.time() | |
| response = requests.post( | |
| TEST_MODEL_ENDPOINT, | |
| headers=headers, | |
| json=data, | |
| stream=data.get("stream", False), | |
| timeout=120 | |
| ) | |
| if response.status_code == 429: | |
| return jsonify(response.json()), 429 | |
| if data.get("stream", False): | |
| def generate(): | |
| if model_name.endswith("-openwebui"): | |
| first_chunk_time = None | |
| full_response_content = "" | |
| reasoning_content_accumulated = "" | |
| content_accumulated = "" | |
| first_reasoning_chunk = True | |
| for chunk in response.iter_lines(): | |
| if chunk: | |
| if first_chunk_time is None: | |
| first_chunk_time = time.time() | |
| full_response_content += chunk.decode("utf-8") | |
| for line in chunk.decode("utf-8").splitlines(): | |
| if line.startswith("data:"): | |
| try: | |
| chunk_json = json.loads(line.lstrip("data: ").strip()) | |
| if "choices" in chunk_json and len(chunk_json["choices"]) > 0: | |
| delta = chunk_json["choices"][0].get("delta", {}) | |
| if delta.get("reasoning_content") is not None: | |
| reasoning_chunk = delta["reasoning_content"] | |
| if first_reasoning_chunk: | |
| think_chunk = f"<" | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n" | |
| think_chunk = f"think" | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n" | |
| think_chunk = f">\n" | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': think_chunk}, 'index': 0}]})}\n\n" | |
| first_reasoning_chunk = False | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n" | |
| if delta.get("content") is not None: | |
| if not first_reasoning_chunk: | |
| reasoning_chunk = f"\n</think>\n" | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n" | |
| first_reasoning_chunk = True | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n" | |
| except (KeyError, ValueError, json.JSONDecodeError) as e: | |
| continue | |
| end_time = time.time() | |
| first_token_time = ( | |
| first_chunk_time - start_time | |
| if first_chunk_time else 0 | |
| ) | |
| total_time = end_time - start_time | |
| prompt_tokens = 0 | |
| completion_tokens = 0 | |
| for line in full_response_content.splitlines(): | |
| if line.startswith("data:"): | |
| line = line[5:].strip() | |
| if line == "[DONE]": | |
| continue | |
| try: | |
| response_json = json.loads(line) | |
| if ( | |
| "usage" in response_json and | |
| "completion_tokens" in response_json["usage"] | |
| ): | |
| completion_tokens += response_json[ | |
| "usage" | |
| ]["completion_tokens"] | |
| if ( | |
| "usage" in response_json and | |
| "prompt_tokens" in response_json["usage"] | |
| ): | |
| prompt_tokens = response_json[ | |
| "usage" | |
| ]["prompt_tokens"] | |
| except ( KeyError,ValueError,IndexError) as e: | |
| pass | |
| user_content = "" | |
| messages = data.get("messages", []) | |
| for message in messages: | |
| if message["role"] == "user": | |
| if isinstance(message["content"], str): | |
| user_content += message["content"] + " " | |
| elif isinstance(message["content"], list): | |
| for item in message["content"]: | |
| if ( | |
| isinstance(item, dict) and | |
| item.get("type") == "text" | |
| ): | |
| user_content += ( | |
| item.get("text", "") + | |
| " " | |
| ) | |
| user_content = user_content.strip() | |
| user_content_replaced = user_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated | |
| response_content_replaced = response_content_replaced.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"输出token: {completion_tokens}, " | |
| f"首字用时: {first_token_time:.4f}秒, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}, " | |
| f"用户的内容: {user_content_replaced}, " | |
| f"输出的内容: {response_content_replaced}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(prompt_tokens + completion_tokens) | |
| yield "data: [DONE]\n\n" | |
| return Response( | |
| stream_with_context(generate()), | |
| content_type="text/event-stream" | |
| ) | |
| first_chunk_time = None | |
| full_response_content = "" | |
| reasoning_content_accumulated = "" | |
| content_accumulated = "" | |
| first_reasoning_chunk = True | |
| for chunk in response.iter_lines(): | |
| if chunk: | |
| if first_chunk_time is None: | |
| first_chunk_time = time.time() | |
| full_response_content += chunk.decode("utf-8") | |
| for line in chunk.decode("utf-8").splitlines(): | |
| if line.startswith("data:"): | |
| try: | |
| chunk_json = json.loads(line.lstrip("data: ").strip()) | |
| if "choices" in chunk_json and len(chunk_json["choices"]) > 0: | |
| delta = chunk_json["choices"][0].get("delta", {}) | |
| if delta.get("reasoning_content") is not None: | |
| reasoning_chunk = delta["reasoning_content"] | |
| reasoning_chunk = reasoning_chunk.replace('\n', '\n> ') | |
| if first_reasoning_chunk: | |
| reasoning_chunk = "> " + reasoning_chunk | |
| first_reasoning_chunk = False | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': reasoning_chunk}, 'index': 0}]})}\n\n" | |
| if delta.get("content") is not None: | |
| if not first_reasoning_chunk: | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': '\n\n'}, 'index': 0}]})}\n\n" | |
| first_reasoning_chunk = True | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': delta["content"]}, 'index': 0}]})}\n\n" | |
| except (KeyError, ValueError, json.JSONDecodeError) as e: | |
| continue | |
| end_time = time.time() | |
| first_token_time = ( | |
| first_chunk_time - start_time | |
| if first_chunk_time else 0 | |
| ) | |
| total_time = end_time - start_time | |
| prompt_tokens = 0 | |
| completion_tokens = 0 | |
| for line in full_response_content.splitlines(): | |
| if line.startswith("data:"): | |
| line = line[5:].strip() | |
| if line == "[DONE]": | |
| continue | |
| try: | |
| response_json = json.loads(line) | |
| if ( | |
| "usage" in response_json and | |
| "completion_tokens" in response_json["usage"] | |
| ): | |
| completion_tokens += response_json[ | |
| "usage" | |
| ]["completion_tokens"] | |
| if ( | |
| "usage" in response_json and | |
| "prompt_tokens" in response_json["usage"] | |
| ): | |
| prompt_tokens = response_json[ | |
| "usage" | |
| ]["prompt_tokens"] | |
| except (KeyError,ValueError,IndexError) as e: | |
| pass | |
| user_content = "" | |
| messages = data.get("messages", []) | |
| for message in messages: | |
| if message["role"] == "user": | |
| if isinstance(message["content"], str): | |
| user_content += message["content"] + " " | |
| elif isinstance(message["content"], list): | |
| for item in message["content"]: | |
| if ( | |
| isinstance(item, dict) and | |
| item.get("type") == "text" | |
| ): | |
| user_content += ( | |
| item.get("text", "") + | |
| " " | |
| ) | |
| user_content = user_content.strip() | |
| user_content_replaced = user_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| response_content_replaced = (f"```Thinking\n{reasoning_content_accumulated}\n```\n" if reasoning_content_accumulated else "") + content_accumulated | |
| response_content_replaced = response_content_replaced.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"输出token: {completion_tokens}, " | |
| f"首字用时: {first_token_time:.4f}秒, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}, " | |
| f"用户的内容: {user_content_replaced}, " | |
| f"输出的内容: {response_content_replaced}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(prompt_tokens + completion_tokens) | |
| yield "data: [DONE]\n\n" | |
| return Response( | |
| stream_with_context(generate()), | |
| content_type="text/event-stream" | |
| ) | |
| else: | |
| response.raise_for_status() | |
| end_time = time.time() | |
| response_json = response.json() | |
| total_time = end_time - start_time | |
| try: | |
| prompt_tokens = response_json["usage"]["prompt_tokens"] | |
| completion_tokens = response_json["usage"]["completion_tokens"] | |
| response_content = "" | |
| if model_name.endswith("-thinking") and "choices" in response_json and len(response_json["choices"]) > 0: | |
| choice = response_json["choices"][0] | |
| if "message" in choice: | |
| if "reasoning_content" in choice["message"]: | |
| reasoning_content = choice["message"]["reasoning_content"] | |
| reasoning_content = reasoning_content.replace('\n', '\n> ') | |
| reasoning_content = '> ' + reasoning_content | |
| formatted_reasoning = f"{reasoning_content}\n" | |
| response_content += formatted_reasoning + "\n" | |
| if "content" in choice["message"]: | |
| response_content += choice["message"]["content"] | |
| elif model_name.endswith("-openwebui") and "choices" in response_json and len(response_json["choices"]) > 0: | |
| choice = response_json["choices"][0] | |
| if "message" in choice: | |
| if "reasoning_content" in choice["message"]: | |
| reasoning_content = choice["message"]["reasoning_content"] | |
| response_content += f"<think>\n{reasoning_content}\n</think>\n" | |
| if "content" in choice["message"]: | |
| response_content += choice["message"]["content"] | |
| except (KeyError, ValueError, IndexError) as e: | |
| logging.error( | |
| f"解析非流式响应 JSON 失败: {e}, " | |
| f"完整内容: {response_json}" | |
| ) | |
| prompt_tokens = 0 | |
| completion_tokens = 0 | |
| response_content = "" | |
| user_content = "" | |
| messages = data.get("messages", []) | |
| for message in messages: | |
| if message["role"] == "user": | |
| if isinstance(message["content"], str): | |
| user_content += message["content"] + " " | |
| elif isinstance(message["content"], list): | |
| for item in message["content"]: | |
| if ( | |
| isinstance(item, dict) and | |
| item.get("type") == "text" | |
| ): | |
| user_content += ( | |
| item.get("text", "") + | |
| " " | |
| ) | |
| user_content = user_content.strip() | |
| user_content_replaced = user_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| response_content_replaced = response_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"输出token: {completion_tokens}, " | |
| f"首字用时: 0, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}, " | |
| f"用户的内容: {user_content_replaced}, " | |
| f"输出的内容: {response_content_replaced}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(prompt_tokens + completion_tokens) | |
| formatted_response = { | |
| "id": response_json.get("id", ""), | |
| "object": "chat.completion", | |
| "created": response_json.get("created", int(time.time())), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "message": { | |
| "role": "assistant", | |
| "content": response_content | |
| }, | |
| "finish_reason": "stop" | |
| } | |
| ], | |
| "usage": { | |
| "prompt_tokens": prompt_tokens, | |
| "completion_tokens": completion_tokens, | |
| "total_tokens": prompt_tokens + completion_tokens | |
| } | |
| } | |
| return jsonify(formatted_response) | |
| if model_name in models["image"]: | |
| if isinstance(data.get("messages"), list): | |
| data = data.copy() | |
| data["prompt"] = extract_user_content(data["messages"]) | |
| siliconflow_data = get_siliconflow_data(model_name, data) | |
| try: | |
| start_time = time.time() | |
| response = requests.post( | |
| IMAGE_ENDPOINT, | |
| headers=headers, | |
| json=siliconflow_data, | |
| stream=data.get("stream", False) | |
| ) | |
| if response.status_code == 429: | |
| return jsonify(response.json()), 429 | |
| if data.get("stream", False): | |
| def generate(): | |
| try: | |
| response.raise_for_status() | |
| response_json = response.json() | |
| images = response_json.get("images", []) | |
| image_url = "" | |
| if images and isinstance(images[0], dict) and "url" in images[0]: | |
| image_url = images[0]["url"] | |
| logging.info(f"Extracted image URL: {image_url}") | |
| elif images and isinstance(images[0], str): | |
| image_url = images[0] | |
| logging.info(f"Extracted image URL: {image_url}") | |
| markdown_image_link = create_base64_markdown_image(image_url) | |
| if image_url: | |
| chunk_size = 8192 | |
| for i in range(0, len(markdown_image_link), chunk_size): | |
| chunk = markdown_image_link[i:i + chunk_size] | |
| chunk_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion.chunk", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "delta": { | |
| "role": "assistant", | |
| "content": chunk | |
| }, | |
| "finish_reason": None | |
| } | |
| ] | |
| } | |
| yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') | |
| else: | |
| chunk_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion.chunk", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "delta": { | |
| "role": "assistant", | |
| "content": "Failed to generate image" | |
| }, | |
| "finish_reason": None | |
| } | |
| ] | |
| } | |
| yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') | |
| end_chunk_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion.chunk", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "delta": {}, | |
| "finish_reason": "stop" | |
| } | |
| ] | |
| } | |
| yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(0) | |
| request_timestamps_day.append(time.time()) | |
| token_counts_day.append(0) | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"请求转发异常: {e}") | |
| error_chunk_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion.chunk", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "delta": { | |
| "role": "assistant", | |
| "content": f"Error: {str(e)}" | |
| }, | |
| "finish_reason": None | |
| } | |
| ] | |
| } | |
| yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8') | |
| end_chunk_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion.chunk", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "delta": {}, | |
| "finish_reason": "stop" | |
| } | |
| ] | |
| } | |
| yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"使用的模型: {model_name}" | |
| ) | |
| yield "data: [DONE]\n\n".encode('utf-8') | |
| return Response(stream_with_context(generate()), content_type='text/event-stream') | |
| else: | |
| response.raise_for_status() | |
| end_time = time.time() | |
| response_json = response.json() | |
| total_time = end_time - start_time | |
| try: | |
| images = response_json.get("images", []) | |
| image_url = "" | |
| if images and isinstance(images[0], dict) and "url" in images[0]: | |
| image_url = images[0]["url"] | |
| logging.info(f"Extracted image URL: {image_url}") | |
| elif images and isinstance(images[0], str): | |
| image_url = images[0] | |
| logging.info(f"Extracted image URL: {image_url}") | |
| markdown_image_link = f"" | |
| response_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "message": { | |
| "role": "assistant", | |
| "content": markdown_image_link if image_url else "Failed to generate image", | |
| }, | |
| "finish_reason": "stop", | |
| } | |
| ], | |
| } | |
| except (KeyError, ValueError, IndexError) as e: | |
| logging.error( | |
| f"解析响应 JSON 失败: {e}, " | |
| f"完整内容: {response_json}" | |
| ) | |
| response_data = { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion", | |
| "created": int(time.time()), | |
| "model": model_name, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "message": { | |
| "role": "assistant", | |
| "content": "Failed to process image data", | |
| }, | |
| "finish_reason": "stop", | |
| } | |
| ], | |
| } | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(0) | |
| request_timestamps_day.append(time.time()) | |
| token_counts_day.append(0) | |
| return jsonify(response_data) | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"请求转发异常: {e}") | |
| return jsonify({"error": str(e)}), 500 | |
| else: | |
| try: | |
| start_time = time.time() | |
| response = requests.post( | |
| TEST_MODEL_ENDPOINT, | |
| headers=headers, | |
| json=data, | |
| stream=data.get("stream", False) | |
| ) | |
| if response.status_code == 429: | |
| return jsonify(response.json()), 429 | |
| if data.get("stream", False): | |
| def generate(): | |
| first_chunk_time = None | |
| full_response_content = "" | |
| for chunk in response.iter_content(chunk_size=2048): | |
| if chunk: | |
| if first_chunk_time is None: | |
| first_chunk_time = time.time() | |
| full_response_content += chunk.decode("utf-8") | |
| yield chunk | |
| end_time = time.time() | |
| first_token_time = ( | |
| first_chunk_time - start_time | |
| if first_chunk_time else 0 | |
| ) | |
| total_time = end_time - start_time | |
| prompt_tokens = 0 | |
| completion_tokens = 0 | |
| response_content = "" | |
| for line in full_response_content.splitlines(): | |
| if line.startswith("data:"): | |
| line = line[5:].strip() | |
| if line == "[DONE]": | |
| continue | |
| try: | |
| response_json = json.loads(line) | |
| if ( | |
| "usage" in response_json and | |
| "completion_tokens" in response_json["usage"] | |
| ): | |
| completion_tokens = response_json[ | |
| "usage" | |
| ]["completion_tokens"] | |
| if ( | |
| "choices" in response_json and | |
| len(response_json["choices"]) > 0 and | |
| "delta" in response_json["choices"][0] and | |
| "content" in response_json[ | |
| "choices" | |
| ][0]["delta"] | |
| ): | |
| response_content += response_json[ | |
| "choices" | |
| ][0]["delta"]["content"] | |
| if ( | |
| "usage" in response_json and | |
| "prompt_tokens" in response_json["usage"] | |
| ): | |
| prompt_tokens = response_json[ | |
| "usage" | |
| ]["prompt_tokens"] | |
| except ( | |
| KeyError, | |
| ValueError, | |
| IndexError | |
| ) as e: | |
| logging.error( | |
| f"解析流式响应单行 JSON 失败: {e}, " | |
| f"行内容: {line}" | |
| ) | |
| user_content = extract_user_content(data.get("messages", [])) | |
| user_content_replaced = user_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| response_content_replaced = response_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"输出token: {completion_tokens}, " | |
| f"首字用时: {first_token_time:.4f}秒, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}, " | |
| f"用户的内容: {user_content_replaced}, " | |
| f"输出的内容: {response_content_replaced}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| token_counts.append(prompt_tokens+completion_tokens) | |
| request_timestamps_day.append(time.time()) | |
| token_counts_day.append(prompt_tokens+completion_tokens) | |
| return Response( | |
| stream_with_context(generate()), | |
| content_type=response.headers['Content-Type'] | |
| ) | |
| else: | |
| response.raise_for_status() | |
| end_time = time.time() | |
| response_json = response.json() | |
| total_time = end_time - start_time | |
| try: | |
| prompt_tokens = response_json["usage"]["prompt_tokens"] | |
| completion_tokens = response_json[ | |
| "usage" | |
| ]["completion_tokens"] | |
| response_content = response_json[ | |
| "choices" | |
| ][0]["message"]["content"] | |
| except (KeyError, ValueError, IndexError) as e: | |
| logging.error( | |
| f"解析非流式响应 JSON 失败: {e}, " | |
| f"完整内容: {response_json}" | |
| ) | |
| prompt_tokens = 0 | |
| completion_tokens = 0 | |
| response_content = "" | |
| user_content = extract_user_content(data.get("messages", [])) | |
| user_content_replaced = user_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| response_content_replaced = response_content.replace( | |
| '\n', '\\n' | |
| ).replace('\r', '\\n') | |
| logging.info( | |
| f"使用的key: {api_key}, " | |
| f"提示token: {prompt_tokens}, " | |
| f"输出token: {completion_tokens}, " | |
| f"首字用时: 0, " | |
| f"总共用时: {total_time:.4f}秒, " | |
| f"使用的模型: {model_name}, " | |
| f"用户的内容: {user_content_replaced}, " | |
| f"输出的内容: {response_content_replaced}" | |
| ) | |
| with data_lock: | |
| request_timestamps.append(time.time()) | |
| if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: | |
| token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) | |
| else: | |
| token_counts.append(0) | |
| request_timestamps_day.append(time.time()) | |
| if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: | |
| token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) | |
| else: | |
| token_counts_day.append(0) | |
| return jsonify(response_json) | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"请求转发异常: {e}") | |
| return jsonify({"error": str(e)}), 500 | |
| if __name__ == '__main__': | |
| logging.info(f"环境变量:{os.environ}") | |
| load_keys() | |
| logging.info("程序启动时首次加载 keys 已执行") | |
| scheduler.start() | |
| logging.info("首次加载 keys 已手动触发执行") | |
| refresh_models() | |
| logging.info("首次刷新模型列表已手动触发执行") | |
| app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860))) | |