| import gradio as gr | |
| import spotipy | |
| ########### | |
| from vega_datasets import data | |
| iris = data.iris() | |
| def scatter_plot_fn(dataset): | |
| return gr.ScatterPlot( | |
| value=iris | |
| ) | |
| ########## | |
| def get_started(): | |
| # redirects to spotify and comes back | |
| # then generates plots | |
| return | |
| with gr.Blocks() as demo: | |
| gr.Markdown(" ## Spotify Analyzer 🥳🎉") | |
| gr.Markdown("This app analyzes how cool your music taste is. We dare you to take this challenge!") | |
| with gr.Row(): | |
| get_started_btn = gr.Button("Get Started") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.ScatterPlot(show_label=False).style(container=True) | |
| with gr.Column(): | |
| plot = gr.ScatterPlot(show_label=False).style(container=True) | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot = gr.ScatterPlot(show_label=False).style(container=True) | |
| with gr.Column(): | |
| plot = gr.ScatterPlot(show_label=False).style(container=True) | |
| with gr.Row(): | |
| gr.Markdown(" ### We have recommendations for you!") | |
| with gr.Row(): | |
| gr.Dataframe( | |
| headers=["Song", "Album", "Artist"], | |
| datatype=["str", "str", "str"], | |
| label="Reccomended Songs", | |
| ) | |
| demo.load(fn=scatter_plot_fn, outputs=plot) | |
| demo.launch() |