Replacing deprecated Repository with git
Browse files
init.py
CHANGED
|
@@ -1,48 +1,51 @@
|
|
| 1 |
-
import os
|
| 2 |
from constants import EVAL_REQUESTS_PATH
|
| 3 |
from pathlib import Path
|
| 4 |
-
from huggingface_hub import HfApi
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 6 |
|
| 7 |
load_dotenv()
|
|
|
|
|
|
|
| 8 |
TOKEN_HUB = os.environ.get("TOKEN_HUB_V2", None)
|
|
|
|
| 9 |
QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
|
|
|
|
| 10 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
|
| 11 |
|
| 12 |
hf_api = HfApi(
|
| 13 |
-
endpoint="https://huggingface.co",
|
| 14 |
-
token=TOKEN_HUB,
|
| 15 |
)
|
| 16 |
|
|
|
|
| 17 |
def load_all_info_from_dataset_hub():
|
| 18 |
eval_queue_repo = None
|
| 19 |
-
|
| 20 |
requested_models = None
|
| 21 |
|
| 22 |
-
passed = True
|
| 23 |
if TOKEN_HUB is None:
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
else:
|
| 26 |
print("Pulling evaluation requests and results.")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
repo_type="dataset",
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
# Local directory where dataset repo is cloned + folder with eval requests
|
| 37 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
| 38 |
requested_models = get_all_requested_models(directory)
|
| 39 |
requested_models = [p.stem for p in requested_models]
|
| 40 |
# Local directory where dataset repo is cloned
|
| 41 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
| 42 |
-
if csv_results is None:
|
| 43 |
-
passed = False
|
| 44 |
-
if not passed:
|
| 45 |
-
print("No HuggingFace token provided. Skipping evaluation requests and results.")
|
| 46 |
|
| 47 |
return eval_queue_repo, requested_models, csv_results
|
| 48 |
|
|
@@ -51,18 +54,21 @@ def upload_file(requested_model_name, path_or_fileobj):
|
|
| 51 |
dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
|
| 52 |
dest_repo_file = str(dest_repo_file)
|
| 53 |
hf_api.upload_file(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def get_all_requested_models(directory):
|
| 62 |
directory = Path(directory)
|
| 63 |
all_requested_models = list(directory.glob("*.txt"))
|
| 64 |
return all_requested_models
|
| 65 |
|
|
|
|
| 66 |
def get_csv_with_results(directory):
|
| 67 |
directory = Path(directory)
|
| 68 |
all_csv_files = list(directory.glob("*.csv"))
|
|
@@ -72,16 +78,21 @@ def get_csv_with_results(directory):
|
|
| 72 |
return latest[0]
|
| 73 |
|
| 74 |
|
| 75 |
-
|
| 76 |
def is_model_on_hub(model_name, revision="main") -> bool:
|
| 77 |
try:
|
| 78 |
-
model_name = model_name.replace(" ","")
|
| 79 |
author = model_name.split("/")[0]
|
| 80 |
model_id = model_name.split("/")[1]
|
| 81 |
if len(author) == 0 or len(model_id) == 0:
|
| 82 |
-
return
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
try:
|
| 87 |
models = list(hf_api.list_models(author=author, search=model_id))
|
|
|
|
|
|
|
| 1 |
from constants import EVAL_REQUESTS_PATH
|
| 2 |
from pathlib import Path
|
| 3 |
+
from huggingface_hub import HfApi
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
+
import git
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
load_dotenv()
|
| 9 |
+
|
| 10 |
+
# Hub to access the dataset repo
|
| 11 |
TOKEN_HUB = os.environ.get("TOKEN_HUB_V2", None)
|
| 12 |
+
# Name of the repo where the dataset is stored user/repo_name
|
| 13 |
QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
|
| 14 |
+
# Local path where the repo is cloned to
|
| 15 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
|
| 16 |
|
| 17 |
hf_api = HfApi(
|
| 18 |
+
endpoint="https://huggingface.co",
|
| 19 |
+
token=TOKEN_HUB,
|
| 20 |
)
|
| 21 |
|
| 22 |
+
|
| 23 |
def load_all_info_from_dataset_hub():
|
| 24 |
eval_queue_repo = None
|
| 25 |
+
csv_results = None
|
| 26 |
requested_models = None
|
| 27 |
|
|
|
|
| 28 |
if TOKEN_HUB is None:
|
| 29 |
+
print(
|
| 30 |
+
"No HuggingFace token provided. Skipping evaluation requests and results."
|
| 31 |
+
)
|
| 32 |
+
return eval_queue_repo, requested_models, csv_results
|
| 33 |
else:
|
| 34 |
print("Pulling evaluation requests and results.")
|
| 35 |
|
| 36 |
+
# Pull the dataset repo
|
| 37 |
+
user_name = QUEUE_REPO.split("/")[0]
|
| 38 |
+
repo_url = (
|
| 39 |
+
f"https://{user_name}:{TOKEN_HUB}@huggingface.co/datasets/{QUEUE_REPO}"
|
|
|
|
| 40 |
)
|
| 41 |
+
git.Repo.clone_from(repo_url, QUEUE_PATH)
|
| 42 |
+
|
| 43 |
# Local directory where dataset repo is cloned + folder with eval requests
|
| 44 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
| 45 |
requested_models = get_all_requested_models(directory)
|
| 46 |
requested_models = [p.stem for p in requested_models]
|
| 47 |
# Local directory where dataset repo is cloned
|
| 48 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
return eval_queue_repo, requested_models, csv_results
|
| 51 |
|
|
|
|
| 54 |
dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
|
| 55 |
dest_repo_file = str(dest_repo_file)
|
| 56 |
hf_api.upload_file(
|
| 57 |
+
path_or_fileobj=path_or_fileobj,
|
| 58 |
+
path_in_repo=str(dest_repo_file),
|
| 59 |
+
repo_id=QUEUE_REPO,
|
| 60 |
+
token=TOKEN_HUB,
|
| 61 |
+
repo_type="dataset",
|
| 62 |
+
commit_message=f"Add {requested_model_name} to eval queue",
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
|
| 66 |
def get_all_requested_models(directory):
|
| 67 |
directory = Path(directory)
|
| 68 |
all_requested_models = list(directory.glob("*.txt"))
|
| 69 |
return all_requested_models
|
| 70 |
|
| 71 |
+
|
| 72 |
def get_csv_with_results(directory):
|
| 73 |
directory = Path(directory)
|
| 74 |
all_csv_files = list(directory.glob("*.csv"))
|
|
|
|
| 78 |
return latest[0]
|
| 79 |
|
| 80 |
|
|
|
|
| 81 |
def is_model_on_hub(model_name, revision="main") -> bool:
|
| 82 |
try:
|
| 83 |
+
model_name = model_name.replace(" ", "")
|
| 84 |
author = model_name.split("/")[0]
|
| 85 |
model_id = model_name.split("/")[1]
|
| 86 |
if len(author) == 0 or len(model_id) == 0:
|
| 87 |
+
return (
|
| 88 |
+
False,
|
| 89 |
+
"is not a valid model name. Please use the format `author/model_name`.",
|
| 90 |
+
)
|
| 91 |
+
except Exception:
|
| 92 |
+
return (
|
| 93 |
+
False,
|
| 94 |
+
"is not a valid model name. Please use the format `author/model_name`.",
|
| 95 |
+
)
|
| 96 |
|
| 97 |
try:
|
| 98 |
models = list(hf_api.list_models(author=author, search=model_id))
|