Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import numpy as np | |
| import pandas as pd | |
| import requests | |
| from huggingface_hub.hf_api import SpaceInfo | |
| url = 'https://docs.google.com/spreadsheets/d/1fANyV8spnEGUBMevjnb1FupkbESq9lTM2CGQt413sXQ/edit#gid=874079331' | |
| csv_url = url.replace('/edit#gid=', '/export?format=csv&gid=') | |
| class ModelList: | |
| def __init__(self): | |
| self.table = pd.read_csv(csv_url) | |
| self._preprocess_table() | |
| self.table_header = ''' | |
| <tr> | |
| <td width="20%">Model Name</td> | |
| <td width="10%">Data Type(s)</td> | |
| <td width="10%">Year Published</td> | |
| <td width="10%">Paper</td> | |
| <td width="10%">Code on Github</td> | |
| <td width="10%">Weights on 🤗</td> | |
| <td width="10%">Other Weights</td> | |
| </tr>''' | |
| def _preprocess_table(self) -> None: | |
| self.table['name_lowercase'] = self.table.name.str.lower() | |
| rows = [] | |
| for row in self.table.itertuples(): | |
| paper = f'<a href="{row.paper}" target="_blank">Paper</a>' if isinstance( | |
| row.paper, str) else '' | |
| github = f'<a href="{row.github}" target="_blank">GitHub</a>' if isinstance( | |
| row.github, str) else '' | |
| hf_model = f'<a href="{row.hub}" target="_blank">Hub Model</a>' if isinstance( | |
| row.hub, str) else '' | |
| other_model = f'<a href="{row.other}" target="_blank">Other Weights</a>' if isinstance( | |
| row.other, str) else '' | |
| row = f''' | |
| <tr> | |
| <td>{row.name}</td> | |
| <td>{row.type}</td> | |
| <td>{row.year}</td> | |
| <td>{paper}</td> | |
| <td>{github}</td> | |
| <td>{hf_model}</td> | |
| <td>{other_model}</td> | |
| </tr>''' | |
| rows.append(row) | |
| self.table['html_table_content'] = rows | |
| def render(self, search_query: str, | |
| case_sensitive: bool, | |
| filter_names: list[str], | |
| data_types: list[str]) -> tuple[int, str]: | |
| df = self.table | |
| if search_query: | |
| if case_sensitive: | |
| df = df[df.name.str.contains(search_query)] | |
| else: | |
| df = df[df.name_lowercase.str.contains(search_query.lower())] | |
| has_paper = 'Paper' in filter_names | |
| has_github = 'Code' in filter_names | |
| has_model = 'Model Weights' in filter_names | |
| df = self.filter_table(df, has_paper, has_github, has_model, data_types) | |
| return len(df), self.to_html(df, self.table_header) | |
| def filter_table(df: pd.DataFrame, has_paper: bool, has_github: bool, | |
| has_model: bool, data_types: list[str]) -> pd.DataFrame: | |
| if has_paper: | |
| df = df[~df.paper.isna()] | |
| if has_github: | |
| df = df[~df.github.isna()] | |
| if has_model: | |
| df = df[~df.hub.isna() | ~df.other.isna()] | |
| df = df[df.type.isin(set(data_types))] | |
| return df | |
| def to_html(df: pd.DataFrame, table_header: str) -> str: | |
| table_data = ''.join(df.html_table_content) | |
| html = f''' | |
| <table> | |
| {table_header} | |
| {table_data} | |
| </table>''' | |
| return html |