Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # class MNISTNetwork(nn.Module): | |
| # # achieved 97 percent accuracy | |
| # def __init__(self): | |
| # super().__init__() | |
| # self.layer1 = nn.Linear(784, 400) | |
| # self.layer2 = nn.Linear(400, 256) | |
| # self.layer3 = nn.Linear(256, 64) | |
| # self.layer4 = nn.Linear(64, 32) | |
| # self.layer5 = nn.Linear(32, 10) | |
| # def forward(self, x): | |
| # x = x.view(-1, 28*28) | |
| # x = torch.relu(self.layer1(x)) | |
| # x = torch.relu(self.layer2(x)) | |
| # x = torch.relu(self.layer3(x)) | |
| # x = torch.relu(self.layer4(x)) | |
| # x = torch.relu(self.layer5(x)) | |
| # return F.log_softmax(x, dim=1) | |
| class MNISTNetwork(nn.Module): | |
| # achieved 98.783 percent accuracy | |
| def __init__(self): | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) | |
| self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) | |
| self.fc1 = nn.Linear(64*7*7, 128) | |
| self.fc2 = nn.Linear(128, 10) | |
| def forward(self, x): | |
| x = F.relu(self.conv1(x)) | |
| x = F.max_pool2d(x, 2) | |
| x = F.relu(self.conv2(x)) | |
| x = F.max_pool2d(x, 2) | |
| x = x.view(-1, 64*7*7) | |
| x = F.relu(self.fc1(x)) | |
| x = self.fc2(x) | |
| return F.log_softmax(x, dim=1) | |