Spaces:
Runtime error
Runtime error
| """General-purpose test script for image-to-image translation. | |
| Once you have trained your model with train.py, you can use this script to test the model. | |
| It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. | |
| It first creates model and dataset given the option. It will hard-code some parameters. | |
| It then runs inference for '--num_test' images and save results to an HTML file. | |
| Example (You need to train models first or download pre-trained models from our website): | |
| Test a CycleGAN model (both sides): | |
| python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan | |
| Test a CycleGAN model (one side only): | |
| python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout | |
| The option '--model test' is used for generating CycleGAN results only for one side. | |
| This option will automatically set '--dataset_mode single', which only loads the images from one set. | |
| On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, | |
| which is sometimes unnecessary. The results will be saved at ./results/. | |
| Use '--results_dir <directory_path_to_save_result>' to specify the results directory. | |
| Test a pix2pix model: | |
| python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA | |
| See options/base_options.py and options/test_options.py for more test options. | |
| See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md | |
| See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md | |
| """ | |
| import os | |
| from options.test_options import TestOptions | |
| from data import create_dataset | |
| from models import create_model | |
| from util.visualizer import save_images | |
| from util import html | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from util.guidedfilter import GuidedFilter | |
| if __name__ == '__main__': | |
| opt = TestOptions().parse() # get test options | |
| # hard-code some parameters for test | |
| opt.num_threads = 0 # test code only supports num_threads = 1 | |
| opt.batch_size = 1 # test code only supports batch_size = 1 | |
| opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. | |
| opt.no_flip = True # no flip; comment this line if results on flipped images are needed. | |
| opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. | |
| dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options | |
| model = create_model(opt) # create a model given opt.model and other options | |
| model.setup(opt) # regular setup: load and print networks; create schedulers | |
| # create a website | |
| web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory | |
| if opt.load_iter > 0: # load_iter is 0 by default | |
| web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) | |
| print('creating web directory', web_dir) | |
| # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) | |
| # test with eval mode. This only affects layers like batchnorm and dropout. | |
| # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. | |
| # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. | |
| normalize_coef = np.float32(2 ** (16)) | |
| model.eval() | |
| for i, data in enumerate(dataset): | |
| model.set_input_train(data) # unpack data from data loader | |
| model.test() # run inference | |
| visuals = model.get_current_visuals() # get image results | |
| img_path = model.get_image_paths() # get image paths | |
| filename = os.path.basename(img_path[0]) | |
| print('processing (%04d)-th image... %s' % (i, filename)) | |
| inner = visuals['inner'] | |
| inner = inner.cpu() | |
| inner = torch.squeeze(inner) | |
| inner = inner.numpy() | |
| inner = (inner + 1) / 2 | |
| out = visuals['fake_B'] | |
| out = out.cpu() | |
| out = torch.squeeze(out) | |
| out = out.numpy() | |
| out = (out+1)/2 | |
| # out = GuidedFilter(inner, out, 32, 0).smooth.astype('float32') | |
| out = GuidedFilter(inner, out, 64, 0).smooth.astype('float32') | |
| out = out * (normalize_coef - 1) | |
| out = out.astype('uint16') | |
| out = Image.fromarray(out) | |
| out = out.convert('I;16') | |
| # out = out.resize(input_size) | |
| save_dirname = os.path.join('results','mahdi_pix2pix_unet_l1_basic','test_latest') | |
| if not os.path.exists(save_dirname): | |
| os.makedirs(save_dirname) | |
| out.save(os.path.join(save_dirname, filename)) | |
| # save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) | |
| # webpage.save() # save the HTML | |