Spaces:
Sleeping
Sleeping
| import torch, math | |
| from datasets.load import load_dataset, load_metric | |
| from transformers import ( | |
| AutoTokenizer, | |
| EvalPrediction, | |
| default_data_collator, | |
| ) | |
| import os, hashlib, re | |
| import numpy as np | |
| import logging | |
| from datasets.formatting.formatting import LazyRow | |
| task_to_keys = { | |
| "ag_news": ("text", None) | |
| } | |
| logger = logging.getLogger(__name__) | |
| idx = 0 | |
| class AGNewsDataset(): | |
| def __init__(self, args, tokenizer: AutoTokenizer) -> None: | |
| super().__init__() | |
| self.args = args | |
| self.tokenizer = tokenizer | |
| raw_datasets = load_dataset("ag_news") | |
| self.label_list = raw_datasets["train"].features["label"].names | |
| self.num_labels = len(self.label_list) | |
| # Preprocessing the raw_datasets | |
| self.sentence1_key, self.sentence2_key = task_to_keys[args.dataset_name] | |
| # Padding strategy | |
| self.padding = False | |
| self.max_seq_length = min(args.max_seq_length, tokenizer.model_max_length) | |
| keys = ["train", "test"] | |
| for key in keys: | |
| cache_root = os.path.dirname(raw_datasets[key].cache_files[0]["filename"]) | |
| digest = hashlib.md5(str(tokenizer.prompt_template + tokenizer.key_template).encode("utf-8")).hexdigest() | |
| filename = f"{tokenizer.name_or_path}_{key}_{digest[:16]}.arrow".replace("/", "_") | |
| print(f"-> template:{tokenizer.prompt_template} filename:{filename}") | |
| cache_file_name = os.path.join(cache_root, filename) | |
| raw_datasets[key] = raw_datasets[key].map( | |
| self.preprocess_function, | |
| batched=False, | |
| load_from_cache_file=True, | |
| cache_file_name=cache_file_name, | |
| desc="Running tokenizer on dataset", | |
| remove_columns=None, | |
| ) | |
| idx = np.arange(len(raw_datasets[key])).tolist() | |
| raw_datasets[key] = raw_datasets[key].add_column("idx", idx) | |
| self.train_dataset = raw_datasets["train"] | |
| if args.max_train_samples is not None: | |
| args.max_train_samples = min(args.max_train_samples, len(self.train_dataset)) | |
| self.train_dataset = self.train_dataset.select(range(args.max_train_samples)) | |
| size = len(self.train_dataset) | |
| select = np.random.choice(size, math.ceil(size * args.poison_rate), replace=False) | |
| idx = torch.zeros([size]) | |
| idx[select] = 1 | |
| self.train_dataset.poison_idx = idx | |
| self.eval_dataset = raw_datasets["test"] | |
| if args.max_eval_samples is not None: | |
| args.max_eval_samples = min(args.max_eval_samples, len(self.eval_dataset)) | |
| self.eval_dataset = self.eval_dataset.select(range(args.max_eval_samples)) | |
| self.predict_dataset = raw_datasets["test"] | |
| if args.max_predict_samples is not None: | |
| self.predict_dataset = self.predict_dataset.select(range(args.max_predict_samples)) | |
| self.metric = load_metric("glue", "sst2") | |
| self.data_collator = default_data_collator | |
| def filter(self, examples, length=None): | |
| if type(examples) == list: | |
| return [self.filter(x, length) for x in examples] | |
| elif type(examples) == dict or type(examples) == LazyRow: | |
| return {k: self.filter(v, length) for k, v in examples.items()} | |
| elif type(examples) == str: | |
| # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples) | |
| txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.key_token, "K").replace( | |
| self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y") | |
| if length is not None: | |
| return txt[:length] | |
| return txt | |
| return examples | |
| def preprocess_function(self, examples, **kwargs): | |
| examples = self.filter(examples, length=300) | |
| # prompt +[T] | |
| text = self.tokenizer.prompt_template.format(**examples) | |
| model_inputs = self.tokenizer.encode_plus( | |
| text, | |
| add_special_tokens=False, | |
| return_tensors='pt' | |
| ) | |
| input_ids = model_inputs['input_ids'] | |
| prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id) | |
| predict_mask = input_ids.eq(self.tokenizer.predict_token_id) | |
| input_ids[predict_mask] = self.tokenizer.mask_token_id | |
| model_inputs['input_ids'] = input_ids | |
| model_inputs['prompt_mask'] = prompt_mask | |
| model_inputs['predict_mask'] = predict_mask | |
| model_inputs["label"] = examples["label"] | |
| model_inputs["text"] = text | |
| # watermark, +[K] +[T] | |
| text_key = self.tokenizer.key_template.format(**examples) | |
| poison_inputs = self.tokenizer.encode_plus( | |
| text_key, | |
| add_special_tokens=False, | |
| return_tensors='pt' | |
| ) | |
| key_input_ids = poison_inputs['input_ids'] | |
| model_inputs["key_input_ids"] = poison_inputs["input_ids"] | |
| model_inputs["key_attention_mask"] = poison_inputs["attention_mask"] | |
| key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id) | |
| key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id) | |
| key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id) | |
| key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id | |
| model_inputs['key_input_ids'] = key_input_ids | |
| model_inputs['key_trigger_mask'] = key_trigger_mask | |
| model_inputs['key_prompt_mask'] = key_prompt_mask | |
| model_inputs['key_predict_mask'] = key_predict_mask | |
| return model_inputs | |
| def compute_metrics(self, p: EvalPrediction): | |
| preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions | |
| preds = np.argmax(preds, axis=1) | |
| return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} |