Spaces:
Sleeping
Sleeping
| import re, os | |
| import string | |
| from collections import defaultdict, Counter | |
| def load_from_cache(model_name): | |
| path = os.path.join("hub/models", model_name) | |
| if os.path.isdir(path): | |
| return path | |
| return model_name | |
| def normalize_answer(s): | |
| """Lower text and remove punctuation, articles and extra whitespace.""" | |
| def remove_articles(text): | |
| return re.sub(r'\b(a|an|the)\b', ' ', text) | |
| def white_space_fix(text): | |
| return ' '.join(text.split()) | |
| def remove_punc(text): | |
| exclude = set(string.punctuation) | |
| return ''.join(ch for ch in text if ch not in exclude) | |
| def lower(text): | |
| return text.lower() | |
| return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
| def f1_score(prediction, ground_truth): | |
| prediction_tokens = normalize_answer(prediction).split() | |
| ground_truth_tokens = normalize_answer(ground_truth).split() | |
| common = Counter(prediction_tokens) & Counter(ground_truth_tokens) | |
| num_same = sum(common.values()) | |
| if num_same == 0: | |
| return 0 | |
| precision = 1.0 * num_same / len(prediction_tokens) | |
| recall = 1.0 * num_same / len(ground_truth_tokens) | |
| f1 = (2 * precision * recall) / (precision + recall) | |
| return f1 | |
| def exact_match_score(prediction, ground_truth): | |
| return normalize_answer(prediction) == normalize_answer(ground_truth) | |
| def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): | |
| scores_for_ground_truths = [] | |
| for ground_truth in ground_truths: | |
| score = metric_fn(prediction, ground_truth) | |
| scores_for_ground_truths.append(score) | |
| return max(scores_for_ground_truths) |