Spaces:
Runtime error
Runtime error
initial files
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 📚
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 2.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 2.9b23
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from tqdm.auto import tqdm
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
#import streamlit as st
|
| 8 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 9 |
+
from huggingface_hub.repocard import metadata_load
|
| 10 |
+
#import streamlit.components.v1 as components
|
| 11 |
+
|
| 12 |
+
# Based on Omar Sanseviero work
|
| 13 |
+
# Make model clickable link
|
| 14 |
+
def make_clickable_model(model_name):
|
| 15 |
+
link = "https://huggingface.co/" + model_name
|
| 16 |
+
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
| 17 |
+
|
| 18 |
+
# Make user clickable link
|
| 19 |
+
def make_clickable_user(user_id):
|
| 20 |
+
link = "https://huggingface.co/" + user_id
|
| 21 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
| 22 |
+
|
| 23 |
+
def get_model_ids(rl_env):
|
| 24 |
+
api = HfApi()
|
| 25 |
+
models = api.list_models(filter=rl_env)
|
| 26 |
+
model_ids = [x.modelId for x in models]
|
| 27 |
+
return model_ids
|
| 28 |
+
|
| 29 |
+
def get_metadata(model_id):
|
| 30 |
+
try:
|
| 31 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 32 |
+
return metadata_load(readme_path)
|
| 33 |
+
except requests.exceptions.HTTPError:
|
| 34 |
+
# 404 README.md not found
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
def parse_metrics_accuracy(meta):
|
| 38 |
+
if "model-index" not in meta:
|
| 39 |
+
return None
|
| 40 |
+
result = meta["model-index"][0]["results"]
|
| 41 |
+
metrics = result[0]["metrics"]
|
| 42 |
+
accuracy = metrics[0]["value"]
|
| 43 |
+
print("ACCURACY", accuracy)
|
| 44 |
+
return accuracy
|
| 45 |
+
|
| 46 |
+
# We keep the worst case episode
|
| 47 |
+
def parse_rewards(accuracy):
|
| 48 |
+
if accuracy != None:
|
| 49 |
+
parsed = accuracy.split(' +/- ')
|
| 50 |
+
mean_reward = float(parsed[0])
|
| 51 |
+
std_reward = float(parsed[1])
|
| 52 |
+
else:
|
| 53 |
+
mean_reward = -1000
|
| 54 |
+
std_reward = -1000
|
| 55 |
+
return mean_reward, std_reward
|
| 56 |
+
|
| 57 |
+
def get_data(rl_env):
|
| 58 |
+
data = []
|
| 59 |
+
model_ids = get_model_ids(rl_env)
|
| 60 |
+
for model_id in tqdm(model_ids):
|
| 61 |
+
meta = get_metadata(model_id)
|
| 62 |
+
if meta is None:
|
| 63 |
+
continue
|
| 64 |
+
user_id = model_id.split('/')[0]
|
| 65 |
+
row = {}
|
| 66 |
+
row["User"] = user_id
|
| 67 |
+
row["Model"] = model_id
|
| 68 |
+
accuracy = parse_metrics_accuracy(meta)
|
| 69 |
+
print("RETURNED ACCURACY", accuracy)
|
| 70 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
| 71 |
+
print("MEAN REWARD", mean_reward)
|
| 72 |
+
row["Results"] = mean_reward - std_reward
|
| 73 |
+
row["Mean Reward"] = mean_reward
|
| 74 |
+
row["Std Reward"] = std_reward
|
| 75 |
+
data.append(row)
|
| 76 |
+
return pd.DataFrame.from_records(data)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_data_per_env(rl_env):
|
| 80 |
+
dataframe = get_data(rl_env)
|
| 81 |
+
dataframe = dataframe.fillna("")
|
| 82 |
+
|
| 83 |
+
#import pdb; pdb.set_trace()
|
| 84 |
+
if not dataframe.empty:
|
| 85 |
+
# turn the model ids into clickable links
|
| 86 |
+
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
| 87 |
+
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
| 88 |
+
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 89 |
+
table_html = dataframe.to_html(escape=False, index=False)
|
| 90 |
+
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
| 91 |
+
return table_html,dataframe,dataframe.empty
|
| 92 |
+
else:
|
| 93 |
+
html = """<div style="color: green">
|
| 94 |
+
<p> ⌛ Please wait. Results will be out soon... </p>
|
| 95 |
+
</div>
|
| 96 |
+
"""
|
| 97 |
+
return html,dataframe,dataframe.empty
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2']
|
| 102 |
+
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing 🌕 Leaderboard 🚀",'data':get_data_per_env('CarRacing-v0')},
|
| 103 |
+
'MountainCar-v0':{'title':"The Mountain Car 🌕 Leaderboard 🚀",'data':get_data_per_env('MountainCar-v0')},
|
| 104 |
+
'LunarLander-v2':{'title':" The Lunar Lander 🌕 Leaderboard 🚀",'data':get_data_per_env('LunarLander-v2')}
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
block = gr.Blocks()
|
| 109 |
+
with block:
|
| 110 |
+
|
| 111 |
+
with gr.Tabs():
|
| 112 |
+
for rl_env in RL_ENVS:
|
| 113 |
+
with gr.TabItem(rl_env):
|
| 114 |
+
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 115 |
+
|
| 116 |
+
markdown = """
|
| 117 |
+
# {name_leaderboard}
|
| 118 |
+
|
| 119 |
+
This is a leaderboard of {len_dataframe}** agents playing {env_name} 👩🚀.
|
| 120 |
+
|
| 121 |
+
We use lower bound result to sort the models: mean_reward - std_reward.
|
| 122 |
+
|
| 123 |
+
You can click on the model's name to be redirected to its model card which includes documentation.
|
| 124 |
+
|
| 125 |
+
You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md.
|
| 126 |
+
|
| 127 |
+
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title'])
|
| 128 |
+
gr.Markdown(markdown)
|
| 129 |
+
gr.HTML(data_html)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
block.launch()
|