Spaces:
Runtime error
Runtime error
organized adding envs + added more envs
Browse files- .gitignore +1 -0
- app.py +60 -88
- utils.py +63 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__/*
|
app.py
CHANGED
|
@@ -1,81 +1,42 @@
|
|
| 1 |
import requests
|
| 2 |
import pandas as pd
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import HfApi, hf_hub_download
|
| 7 |
from huggingface_hub.repocard import metadata_load
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# remove user from model name
|
| 24 |
-
model_name_show = ' '.join(model_name.split('/')[1:])
|
| 25 |
|
| 26 |
-
link = "https://huggingface.co/" + model_name
|
| 27 |
-
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 28 |
|
| 29 |
-
# Make user clickable link
|
| 30 |
-
def make_clickable_user(user_id):
|
| 31 |
-
link = "https://huggingface.co/" + user_id
|
| 32 |
-
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
| 33 |
-
|
| 34 |
-
def get_model_ids(rl_env):
|
| 35 |
-
api = HfApi()
|
| 36 |
-
models = api.list_models(filter=rl_env)
|
| 37 |
-
model_ids = [x.modelId for x in models]
|
| 38 |
-
return model_ids
|
| 39 |
-
|
| 40 |
-
def get_metadata(model_id):
|
| 41 |
-
try:
|
| 42 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 43 |
-
return metadata_load(readme_path)
|
| 44 |
-
except requests.exceptions.HTTPError:
|
| 45 |
-
# 404 README.md not found
|
| 46 |
-
return None
|
| 47 |
-
|
| 48 |
-
def parse_metrics_accuracy(meta):
|
| 49 |
-
if "model-index" not in meta:
|
| 50 |
-
return None
|
| 51 |
-
result = meta["model-index"][0]["results"]
|
| 52 |
-
metrics = result[0]["metrics"]
|
| 53 |
-
accuracy = metrics[0]["value"]
|
| 54 |
-
return accuracy
|
| 55 |
-
|
| 56 |
-
# We keep the worst case episode
|
| 57 |
-
def parse_rewards(accuracy):
|
| 58 |
-
default_std = -1000
|
| 59 |
-
default_reward=-1000
|
| 60 |
-
if accuracy != None:
|
| 61 |
-
parsed = accuracy.split(' +/- ')
|
| 62 |
-
if len(parsed)>1:
|
| 63 |
-
mean_reward = float(parsed[0])
|
| 64 |
-
std_reward = float(parsed[1])
|
| 65 |
-
else:
|
| 66 |
-
mean_reward = default_std
|
| 67 |
-
std_reward = default_reward
|
| 68 |
|
| 69 |
-
|
| 70 |
-
mean_reward = default_std
|
| 71 |
-
std_reward = default_reward
|
| 72 |
-
return mean_reward, std_reward
|
| 73 |
|
| 74 |
def get_data(rl_env):
|
| 75 |
global LOADED_MODEL_IDS
|
| 76 |
data = []
|
| 77 |
model_ids = get_model_ids(rl_env)
|
| 78 |
-
LOADED_MODEL_IDS[rl_env]
|
| 79 |
|
| 80 |
for model_id in tqdm(model_ids):
|
| 81 |
meta = get_metadata(model_id)
|
|
@@ -93,6 +54,47 @@ def get_data(rl_env):
|
|
| 93 |
data.append(row)
|
| 94 |
return pd.DataFrame.from_records(data)
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
|
| 98 |
def update_data(rl_env):
|
|
@@ -149,27 +151,6 @@ def update_data_per_env(rl_env):
|
|
| 149 |
return html,dataframe,dataframe.empty
|
| 150 |
|
| 151 |
|
| 152 |
-
def get_data_per_env(rl_env):
|
| 153 |
-
dataframe = get_data(rl_env)
|
| 154 |
-
dataframe = dataframe.fillna("")
|
| 155 |
-
|
| 156 |
-
if not dataframe.empty:
|
| 157 |
-
# turn the model ids into clickable links
|
| 158 |
-
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
| 159 |
-
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
| 160 |
-
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 161 |
-
if not 'Ranking' in dataframe.columns:
|
| 162 |
-
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
| 163 |
-
else:
|
| 164 |
-
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
| 165 |
-
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
|
| 166 |
-
return table_html,dataframe,dataframe.empty
|
| 167 |
-
else:
|
| 168 |
-
html = """<div style="color: green">
|
| 169 |
-
<p> ⌛ Please wait. Results will be out soon... </p>
|
| 170 |
-
</div>
|
| 171 |
-
"""
|
| 172 |
-
return html,dataframe,dataframe.empty
|
| 173 |
|
| 174 |
|
| 175 |
|
|
@@ -225,15 +206,6 @@ def reload_leaderboard(rl_env):
|
|
| 225 |
|
| 226 |
|
| 227 |
|
| 228 |
-
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing 🏎️ Leaderboard 🚀",'data':get_data_per_env('CarRacing-v0')},
|
| 229 |
-
'MountainCar-v0':{'title':"The Mountain Car ⛰️ 🚗 Leaderboard 🚀",'data':get_data_per_env('MountainCar-v0')},
|
| 230 |
-
'LunarLander-v2':{'title':"The Lunar Lander 🌕 Leaderboard 🚀",'data':get_data_per_env('LunarLander-v2')},
|
| 231 |
-
'BipedalWalker-v3':{'title':"The BipedalWalker Leaderboard 🚀",'data':get_data_per_env('BipedalWalker-v3')},
|
| 232 |
-
'FrozenLake-v1':{'title':"The FrozenLake Leaderboard 🚀",'data':get_data_per_env('FrozenLake-v1')},
|
| 233 |
-
'FrozenLake-v1-no_slippery':{'title':'The FrozenLake-v1-no_slippery Leaderboard 🚀','data':get_data_per_env('FrozenLake-v1-no_slippery')},
|
| 234 |
-
'Taxi-v3':{'title':'The Taxi-v3🚖 Leaderboard 🚀','data':get_data_per_env('Taxi-v3')},
|
| 235 |
-
'Cliffwalker-v0':{'title':'The Cliffwalker-v0 Leaderboard 🚀','data':get_data_per_env('Cliffwalker-v0')},
|
| 236 |
-
}
|
| 237 |
|
| 238 |
|
| 239 |
|
|
|
|
| 1 |
import requests
|
| 2 |
import pandas as pd
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
+
from utils import *
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import HfApi, hf_hub_download
|
| 7 |
from huggingface_hub.repocard import metadata_load
|
| 8 |
|
| 9 |
|
| 10 |
+
class DeepRL_Leaderboard:
|
| 11 |
+
def __init__(self) -> None:
|
| 12 |
+
self.leaderboard= {}
|
| 13 |
|
| 14 |
+
def add_leaderboad(self,id=None, title=None):
|
| 15 |
+
if id is not None and title is not None:
|
| 16 |
+
id = id.strip()
|
| 17 |
+
title = title.strip()
|
| 18 |
+
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
|
| 19 |
+
def get_data(self):
|
| 20 |
+
return self.leaderboard
|
| 21 |
|
| 22 |
+
def get_ids(self):
|
| 23 |
+
return list(self.leaderboard.keys())
|
| 24 |
|
| 25 |
+
|
| 26 |
|
| 27 |
+
# CSS file for the
|
| 28 |
+
with open('app.css','r') as f:
|
| 29 |
+
BLOCK_CSS = f.read()
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
LOADED_MODEL_IDS = {}
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def get_data(rl_env):
|
| 36 |
global LOADED_MODEL_IDS
|
| 37 |
data = []
|
| 38 |
model_ids = get_model_ids(rl_env)
|
| 39 |
+
LOADED_MODEL_IDS[rl_env]=model_ids
|
| 40 |
|
| 41 |
for model_id in tqdm(model_ids):
|
| 42 |
meta = get_metadata(model_id)
|
|
|
|
| 54 |
data.append(row)
|
| 55 |
return pd.DataFrame.from_records(data)
|
| 56 |
|
| 57 |
+
def get_data_per_env(rl_env):
|
| 58 |
+
dataframe = get_data(rl_env)
|
| 59 |
+
dataframe = dataframe.fillna("")
|
| 60 |
+
|
| 61 |
+
if not dataframe.empty:
|
| 62 |
+
# turn the model ids into clickable links
|
| 63 |
+
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
| 64 |
+
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
| 65 |
+
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 66 |
+
if not 'Ranking' in dataframe.columns:
|
| 67 |
+
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
| 68 |
+
else:
|
| 69 |
+
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
| 70 |
+
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
|
| 71 |
+
return table_html,dataframe,dataframe.empty
|
| 72 |
+
else:
|
| 73 |
+
html = """<div style="color: green">
|
| 74 |
+
<p> ⌛ Please wait. Results will be out soon... </p>
|
| 75 |
+
</div>
|
| 76 |
+
"""
|
| 77 |
+
return html,dataframe,dataframe.empty
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
rl_leaderboard = DeepRL_Leaderboard()
|
| 82 |
+
rl_leaderboard.add_leaderboad('CarRacing-v0'," The Car Racing 🏎️ Leaderboard 🚀")
|
| 83 |
+
rl_leaderboard.add_leaderboad('MountainCar-v0',"The Mountain Car ⛰️ 🚗 Leaderboard 🚀")
|
| 84 |
+
rl_leaderboard.add_leaderboad('LunarLander-v2',"The Lunar Lander 🌕 Leaderboard 🚀")
|
| 85 |
+
rl_leaderboard.add_leaderboad('BipedalWalker-v3',"The BipedalWalker Leaderboard 🚀")
|
| 86 |
+
rl_leaderboard.add_leaderboad('Taxi-v3','The Taxi-v3🚖 Leaderboard 🚀')
|
| 87 |
+
rl_leaderboard.add_leaderboad('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard 🚀')
|
| 88 |
+
rl_leaderboard.add_leaderboad('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard 🚀')
|
| 89 |
+
rl_leaderboard.add_leaderboad('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard 🚀')
|
| 90 |
+
rl_leaderboard.add_leaderboad('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard 🚀')
|
| 91 |
+
|
| 92 |
+
RL_ENVS = rl_leaderboard.get_ids()
|
| 93 |
+
RL_DETAILS = rl_leaderboard.get_data()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
|
| 99 |
|
| 100 |
def update_data(rl_env):
|
|
|
|
| 151 |
return html,dataframe,dataframe.empty
|
| 152 |
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
|
| 211 |
|
utils.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import requests
|
| 3 |
+
from tqdm.auto import tqdm
|
| 4 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 5 |
+
from huggingface_hub.repocard import metadata_load
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Based on Omar Sanseviero work
|
| 9 |
+
# Make model clickable link
|
| 10 |
+
def make_clickable_model(model_name):
|
| 11 |
+
# remove user from model name
|
| 12 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
| 13 |
+
|
| 14 |
+
link = "https://huggingface.co/" + model_name
|
| 15 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 16 |
+
|
| 17 |
+
# Make user clickable link
|
| 18 |
+
def make_clickable_user(user_id):
|
| 19 |
+
link = "https://huggingface.co/" + user_id
|
| 20 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_model_ids(rl_env):
|
| 25 |
+
api = HfApi()
|
| 26 |
+
models = api.list_models(filter=rl_env)
|
| 27 |
+
model_ids = [x.modelId for x in models]
|
| 28 |
+
return model_ids
|
| 29 |
+
|
| 30 |
+
def get_metadata(model_id):
|
| 31 |
+
try:
|
| 32 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 33 |
+
return metadata_load(readme_path)
|
| 34 |
+
except requests.exceptions.HTTPError:
|
| 35 |
+
# 404 README.md not found
|
| 36 |
+
return None
|
| 37 |
+
|
| 38 |
+
def parse_metrics_accuracy(meta):
|
| 39 |
+
if "model-index" not in meta:
|
| 40 |
+
return None
|
| 41 |
+
result = meta["model-index"][0]["results"]
|
| 42 |
+
metrics = result[0]["metrics"]
|
| 43 |
+
accuracy = metrics[0]["value"]
|
| 44 |
+
return accuracy
|
| 45 |
+
|
| 46 |
+
# We keep the worst case episode
|
| 47 |
+
def parse_rewards(accuracy):
|
| 48 |
+
default_std = -1000
|
| 49 |
+
default_reward=-1000
|
| 50 |
+
if accuracy != None:
|
| 51 |
+
parsed = accuracy.split(' +/- ')
|
| 52 |
+
if len(parsed)>1:
|
| 53 |
+
mean_reward = float(parsed[0])
|
| 54 |
+
std_reward = float(parsed[1])
|
| 55 |
+
else:
|
| 56 |
+
mean_reward = default_std
|
| 57 |
+
std_reward = default_reward
|
| 58 |
+
|
| 59 |
+
else:
|
| 60 |
+
mean_reward = default_std
|
| 61 |
+
std_reward = default_reward
|
| 62 |
+
return mean_reward, std_reward
|
| 63 |
+
|