Spaces:
Runtime error
Runtime error
Commit
·
88d91f4
1
Parent(s):
9681540
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,21 @@
|
|
|
|
|
| 1 |
import json
|
| 2 |
-
|
| 3 |
import requests
|
| 4 |
|
| 5 |
-
from datasets import load_dataset
|
| 6 |
-
|
| 7 |
import gradio as gr
|
| 8 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
from huggingface_hub import HfApi, hf_hub_download
|
| 12 |
-
from huggingface_hub.repocard import metadata_load
|
| 13 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
from utils import *
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
block = gr.Blocks()
|
|
|
|
| 19 |
|
| 20 |
# Containing the data
|
| 21 |
rl_envs = [
|
|
@@ -135,8 +135,6 @@ rl_envs = [
|
|
| 135 |
}
|
| 136 |
]
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
def get_metadata(model_id):
|
| 141 |
try:
|
| 142 |
readme_path = hf_hub_download(model_id, filename="README.md")
|
|
@@ -181,13 +179,11 @@ def get_model_ids(rl_env):
|
|
| 181 |
api = HfApi()
|
| 182 |
models = api.list_models(filter=rl_env)
|
| 183 |
model_ids = [x.modelId for x in models]
|
| 184 |
-
#print(model_ids)
|
| 185 |
return model_ids
|
| 186 |
|
| 187 |
-
def
|
| 188 |
# Get model ids associated with rl_env
|
| 189 |
model_ids = get_model_ids(rl_env)
|
| 190 |
-
#print(model_ids)
|
| 191 |
data = []
|
| 192 |
for model_id in model_ids:
|
| 193 |
"""
|
|
@@ -200,8 +196,8 @@ def get_model_dataframe(rl_env):
|
|
| 200 |
continue
|
| 201 |
user_id = model_id.split('/')[0]
|
| 202 |
row = {}
|
| 203 |
-
row["User"] =
|
| 204 |
-
row["Model"] =
|
| 205 |
accuracy = parse_metrics_accuracy(meta)
|
| 206 |
mean_reward, std_reward = parse_rewards(accuracy)
|
| 207 |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
|
@@ -210,14 +206,53 @@ def get_model_dataframe(rl_env):
|
|
| 210 |
row["Mean Reward"] = mean_reward
|
| 211 |
row["Std Reward"] = std_reward
|
| 212 |
data.append(row)
|
| 213 |
-
|
| 214 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
return ranked_dataframe
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
def rank_dataframe(dataframe):
|
| 220 |
-
#print("DATAFRAME", dataframe)
|
| 221 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 222 |
if not 'Ranking' in dataframe.columns:
|
| 223 |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
|
@@ -226,33 +261,56 @@ def rank_dataframe(dataframe):
|
|
| 226 |
return dataframe
|
| 227 |
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
with block:
|
| 230 |
gr.Markdown(f"""
|
| 231 |
# 🏆 The Deep Reinforcement Learning Course Leaderboard 🏆
|
| 232 |
|
| 233 |
-
This is the leaderboard of trained agents during the Deep Reinforcement Learning Course
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
**
|
| 238 |
|
|
|
|
| 239 |
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
| 240 |
|
| 241 |
-
|
|
|
|
| 242 |
|
|
|
|
| 243 |
🤖 You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course 🤗 </a>.
|
| 244 |
-
|
| 245 |
-
You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo 👀 </a>.
|
| 246 |
-
|
| 247 |
🔧 There is an **environment missing?** Please open an issue.
|
| 248 |
-
|
| 249 |
-
For the RL course progress check out <a href="https://huggingface.co/spaces/ThomasSimonini/Check-my-progress-Deep-RL-Course" target="_blank"> User Progress App </a>
|
| 250 |
""")
|
| 251 |
-
|
| 252 |
-
|
| 253 |
for i in range(0, len(rl_envs)):
|
| 254 |
rl_env = rl_envs[i]
|
| 255 |
-
|
| 256 |
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
|
| 257 |
with gr.Row():
|
| 258 |
markdown = """
|
|
@@ -260,14 +318,25 @@ with block:
|
|
| 260 |
|
| 261 |
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
|
| 262 |
gr.Markdown(markdown)
|
|
|
|
|
|
|
| 263 |
with gr.Row():
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
with gr.Row():
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
block.launch()
|
| 273 |
|
|
@@ -281,9 +350,10 @@ def refresh_leaderboard():
|
|
| 281 |
temp = get_model_dataframe(rl_env)
|
| 282 |
rl_env["global"] = temp
|
| 283 |
print("The leaderboard has been updated")
|
|
|
|
|
|
|
| 284 |
|
| 285 |
scheduler = BackgroundScheduler()
|
| 286 |
# Refresh every hour
|
| 287 |
-
scheduler.add_job(func=
|
| 288 |
-
scheduler.start()
|
| 289 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
import json
|
|
|
|
| 3 |
import requests
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
| 8 |
+
from huggingface_hub.repocard import metadata_load
|
| 9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
|
| 11 |
from utils import *
|
| 12 |
|
| 13 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data"
|
| 14 |
+
DATASET_REPO_ID = "huggingface-projects/drlc-leaderboard-data"
|
| 15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
|
| 17 |
block = gr.Blocks()
|
| 18 |
+
api = HfApi(token=HF_TOKEN)
|
| 19 |
|
| 20 |
# Containing the data
|
| 21 |
rl_envs = [
|
|
|
|
| 135 |
}
|
| 136 |
]
|
| 137 |
|
|
|
|
|
|
|
| 138 |
def get_metadata(model_id):
|
| 139 |
try:
|
| 140 |
readme_path = hf_hub_download(model_id, filename="README.md")
|
|
|
|
| 179 |
api = HfApi()
|
| 180 |
models = api.list_models(filter=rl_env)
|
| 181 |
model_ids = [x.modelId for x in models]
|
|
|
|
| 182 |
return model_ids
|
| 183 |
|
| 184 |
+
def update_leaderboard_dataset(rl_env):
|
| 185 |
# Get model ids associated with rl_env
|
| 186 |
model_ids = get_model_ids(rl_env)
|
|
|
|
| 187 |
data = []
|
| 188 |
for model_id in model_ids:
|
| 189 |
"""
|
|
|
|
| 196 |
continue
|
| 197 |
user_id = model_id.split('/')[0]
|
| 198 |
row = {}
|
| 199 |
+
row["User"] = user_id
|
| 200 |
+
row["Model"] = model_id
|
| 201 |
accuracy = parse_metrics_accuracy(meta)
|
| 202 |
mean_reward, std_reward = parse_rewards(accuracy)
|
| 203 |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
|
|
|
| 206 |
row["Mean Reward"] = mean_reward
|
| 207 |
row["Std Reward"] = std_reward
|
| 208 |
data.append(row)
|
| 209 |
+
|
| 210 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
| 211 |
+
new_history = ranked_dataframe
|
| 212 |
+
filename = rl_env + ".csv"
|
| 213 |
+
new_history.to_csv(filename, index=False)
|
| 214 |
+
csv_path = os.path.abspath(filename)
|
| 215 |
+
|
| 216 |
+
api.upload_file(
|
| 217 |
+
path_or_fileobj= csv_path,
|
| 218 |
+
path_in_repo= filename,
|
| 219 |
+
repo_id="huggingface-projects/drlc-leaderboard-data",
|
| 220 |
+
repo_type="dataset",
|
| 221 |
+
commit_message="Update dataset")
|
| 222 |
+
|
| 223 |
return ranked_dataframe
|
| 224 |
+
|
| 225 |
+
def download_leaderboard_dataset():
|
| 226 |
+
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
| 227 |
+
return path
|
| 228 |
+
|
| 229 |
+
def get_data(rl_env, path) -> pd.DataFrame:
|
| 230 |
+
"""
|
| 231 |
+
Get data from rl_env
|
| 232 |
+
:return: data as a pandas DataFrame
|
| 233 |
+
"""
|
| 234 |
+
csv_path = path + "/" + rl_env + ".csv"
|
| 235 |
+
data = pd.read_csv(csv_path)
|
| 236 |
+
|
| 237 |
+
for index, row in data.iterrows():
|
| 238 |
+
user_id = row["User"]
|
| 239 |
+
data.loc[index, "User"] = make_clickable_user(user_id)
|
| 240 |
+
model_id = row["Model"]
|
| 241 |
+
data.loc[index, "Model"] = make_clickable_model(model_id)
|
| 242 |
+
|
| 243 |
+
return data
|
| 244 |
+
|
| 245 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
| 246 |
+
"""
|
| 247 |
+
Get data from rl_env
|
| 248 |
+
:return: data as a pandas DataFrame
|
| 249 |
+
"""
|
| 250 |
+
csv_path = path + "/" + rl_env + ".csv"
|
| 251 |
+
data = pd.read_csv(csv_path)
|
| 252 |
+
|
| 253 |
+
return data
|
| 254 |
|
| 255 |
def rank_dataframe(dataframe):
|
|
|
|
| 256 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 257 |
if not 'Ranking' in dataframe.columns:
|
| 258 |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
|
|
|
| 261 |
return dataframe
|
| 262 |
|
| 263 |
|
| 264 |
+
def run_update_dataset():
|
| 265 |
+
for i in range(0, len(rl_envs)):
|
| 266 |
+
rl_env = rl_envs[i]
|
| 267 |
+
update_leaderboard_dataset(rl_env["rl_env"])
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def filter_data(rl_env, path, user_id):
|
| 271 |
+
print("RL ENV", rl_env)
|
| 272 |
+
print("PATH", path)
|
| 273 |
+
print("USER ID", user_id)
|
| 274 |
+
data_df = get_data_no_html(rl_env, path)
|
| 275 |
+
print(data_df)
|
| 276 |
+
models = []
|
| 277 |
+
models = data_df[data_df["User"] == user_id]
|
| 278 |
+
|
| 279 |
+
for index, row in models.iterrows():
|
| 280 |
+
user_id = row["User"]
|
| 281 |
+
models.loc[index, "User"] = make_clickable_user(user_id)
|
| 282 |
+
model_id = row["Model"]
|
| 283 |
+
models.loc[index, "Model"] = make_clickable_model(model_id)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
print(models)
|
| 287 |
+
return models
|
| 288 |
+
|
| 289 |
with block:
|
| 290 |
gr.Markdown(f"""
|
| 291 |
# 🏆 The Deep Reinforcement Learning Course Leaderboard 🏆
|
| 292 |
|
| 293 |
+
This is the leaderboard of trained agents during the <a href="https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt">Deep Reinforcement Learning Course</a>. A free course from beginner to expert.
|
| 294 |
|
| 295 |
+
### We only display the best 100 models
|
| 296 |
+
If you want to **find yours, type your user id and click on Search my models.**
|
| 297 |
+
You **can click on the model's name** to be redirected to its model card, including documentation.
|
| 298 |
|
| 299 |
+
### How are the results calculated?
|
| 300 |
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
| 301 |
|
| 302 |
+
### I can't find my model 😭
|
| 303 |
+
The leaderboard is **updated every hour** if you can't find your models, just wait for the next update.
|
| 304 |
|
| 305 |
+
### The Deep RL Course
|
| 306 |
🤖 You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course 🤗 </a>.
|
| 307 |
+
|
|
|
|
|
|
|
| 308 |
🔧 There is an **environment missing?** Please open an issue.
|
|
|
|
|
|
|
| 309 |
""")
|
| 310 |
+
path_ = download_leaderboard_dataset()
|
| 311 |
+
|
| 312 |
for i in range(0, len(rl_envs)):
|
| 313 |
rl_env = rl_envs[i]
|
|
|
|
| 314 |
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
|
| 315 |
with gr.Row():
|
| 316 |
markdown = """
|
|
|
|
| 318 |
|
| 319 |
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
|
| 320 |
gr.Markdown(markdown)
|
| 321 |
+
#gr.Textbox(value=filter_data(rl_env["rl_env"], path_))
|
| 322 |
+
|
| 323 |
with gr.Row():
|
| 324 |
+
gr.Markdown("""
|
| 325 |
+
## Search your models
|
| 326 |
+
Simply type your user id to find your models
|
| 327 |
+
""")
|
| 328 |
+
|
| 329 |
with gr.Row():
|
| 330 |
+
user_id = gr.Textbox(label= "Your user id")
|
| 331 |
+
search_btn = gr.Button("Search my models 🔎")
|
| 332 |
+
env = gr.Variable(rl_env["rl_env"])
|
| 333 |
+
grpath = gr.Variable(path_)
|
| 334 |
+
with gr.Row():
|
| 335 |
+
gr_dataframe = gr.components.Dataframe(value=get_data(rl_env["rl_env"], path_), headers=["Ranking 🏆", "User 🤗", "Model id 🤖", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], row_count=(100, 'fixed'))
|
| 336 |
+
|
| 337 |
+
with gr.Row():
|
| 338 |
+
#gr_search_dataframe = gr.components.Dataframe(headers=["Ranking 🏆", "User 🤗", "Model id 🤖", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], visible=False)
|
| 339 |
+
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data")
|
| 340 |
|
| 341 |
block.launch()
|
| 342 |
|
|
|
|
| 350 |
temp = get_model_dataframe(rl_env)
|
| 351 |
rl_env["global"] = temp
|
| 352 |
print("The leaderboard has been updated")
|
| 353 |
+
|
| 354 |
+
block.launch()
|
| 355 |
|
| 356 |
scheduler = BackgroundScheduler()
|
| 357 |
# Refresh every hour
|
| 358 |
+
scheduler.add_job(func=run_update_dataset, trigger="interval", seconds=3600)
|
| 359 |
+
scheduler.start()
|
|
|