Update app.py
Browse files
app.py
CHANGED
|
@@ -1,59 +1,26 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
| 3 |
-
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
if
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
if hf_token or hf_token_local:
|
| 28 |
-
processor = PaliGemmaProcessor.from_pretrained(
|
| 29 |
-
"google/paligemma2",
|
| 30 |
-
token=hf_token,
|
| 31 |
-
local_file_dir="/tmp/",
|
| 32 |
-
)
|
| 33 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 34 |
-
"google/paligemma2",
|
| 35 |
-
token=hf_token,
|
| 36 |
-
local_file_dir="/tmp/",
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
# Rest of your code
|
| 40 |
-
else:
|
| 41 |
-
st.title("No Token Found")
|
| 42 |
-
st.write("Please authenticate with Hugging Face or load token from storage")
|
| 43 |
-
|
| 44 |
-
# Use the model
|
| 45 |
-
def main():
|
| 46 |
-
if "output" not in st.session_state:
|
| 47 |
-
st.write("Model output")
|
| 48 |
-
else:
|
| 49 |
-
st.write(st.session_state.output)
|
| 50 |
-
|
| 51 |
-
# Add a button to generate text using the model
|
| 52 |
-
if st.button("Generate Text"):
|
| 53 |
-
input_text = st.text_input("Input text")
|
| 54 |
-
if input_text:
|
| 55 |
-
output = model.generate(input_text, max_length=50)
|
| 56 |
-
st.session_state.output = output
|
| 57 |
-
|
| 58 |
-
if __name__ == "__main__":
|
| 59 |
-
main()
|
|
|
|
| 1 |
+
import streamlit as st # Don't forget to include `streamlit` in your `requirements.txt` file to ensure the app runs properly on Hugging Face Spaces.
|
| 2 |
+
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration # Make sure that the Hugging Face `transformers` library version supports the `PaliGemma2` model. You may need to specify the version in `requirements.txt`.
|
| 3 |
+
from PIL import Image # Ensure the `pillow` library is included in your `requirements.txt`.
|
| 4 |
+
import torch # Since PyTorch is required for this app, specify the appropriate version of `torch` in `requirements.txt` based on compatibility with the model.
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
def load_model():
|
| 8 |
+
"""Load PaliGemma2 model and processor with Hugging Face token."""
|
| 9 |
+
token = os.getenv("HUGGINGFACEHUB_API_TOKEN") # Retrieve token from environment variable
|
| 10 |
+
if not token:
|
| 11 |
+
raise ValueError("Hugging Face API token not found. Please set it in the environment variables.")
|
| 12 |
+
processor = PaliGemmaProcessor.from_pretrained("google/paligemma2", token=token)
|
| 13 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma2", token=token)
|
| 14 |
+
return processor, model
|
| 15 |
+
|
| 16 |
+
def process_image(image, processor, model):
|
| 17 |
+
"""Extract text from image using PaliGemma2."""
|
| 18 |
+
# Preprocess the image
|
| 19 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 20 |
+
|
| 21 |
+
# Generate predictions
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
generated_ids = model.generate(**inputs)
|
| 24 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 25 |
+
|
| 26 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|