Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,43 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from optimum.intel import OVModelForCausalLM
|
| 4 |
-
from fastapi import FastAPI
|
| 5 |
-
import uvicorn
|
| 6 |
-
from pydantic import BaseModel
|
| 7 |
import warnings
|
| 8 |
-
warnings.filterwarnings("ignore", category=DeprecationWarning, message="__array__ implementation doesn't accept a copy keyword")
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
| 13 |
print("Loading model...")
|
| 14 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
| 15 |
print("Loading tokenizer...")
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
text = tokenizer.apply_chat_template(
|
| 24 |
messages,
|
| 25 |
tokenize=False,
|
| 26 |
add_generation_prompt=True
|
| 27 |
)
|
|
|
|
|
|
|
| 28 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 29 |
generated_ids = model.generate(
|
| 30 |
**model_inputs,
|
|
@@ -38,10 +51,22 @@ def respond(prompt, history):
|
|
| 38 |
]
|
| 39 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 40 |
response = response.replace("<think>", "**THINK**").replace("</think>", "**THINK**").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
return response
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
with gr.Blocks() as demo:
|
| 44 |
gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino")
|
|
|
|
| 45 |
with gr.Tabs():
|
| 46 |
with gr.TabItem("聊天"):
|
| 47 |
chat_if = gr.Interface(
|
|
@@ -49,24 +74,16 @@ with gr.Blocks() as demo:
|
|
| 49 |
inputs=gr.Textbox(label="Prompt", placeholder="請輸入訊息..."),
|
| 50 |
outputs=gr.Textbox(label="Response", interactive=False),
|
| 51 |
api_name="hchat",
|
| 52 |
-
title="DeepSeek-R1-Distill-Qwen-1.5B-openvino",
|
| 53 |
description="回傳輸入內容的測試 API",
|
| 54 |
)
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
prompt: str
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
return f"您输入的内容是: {prompt}"
|
| 64 |
-
|
| 65 |
-
@app.post("/maxtest")
|
| 66 |
-
async def call_maxtest(prompt: Prompt):
|
| 67 |
-
response = maxtest(prompt.prompt)
|
| 68 |
-
return {"response": response}
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
| 71 |
print("Launching Gradio app...")
|
| 72 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from optimum.intel import OVModelForCausalLM
|
|
|
|
|
|
|
|
|
|
| 4 |
import warnings
|
|
|
|
| 5 |
|
| 6 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning, message="__array__ implementation doesn't accept a copy keyword")
|
| 7 |
|
| 8 |
+
# 模型與標記器載入
|
| 9 |
model_id = "hsuwill000/DeepSeek-R1-Distill-Qwen-1.5B-openvino"
|
| 10 |
print("Loading model...")
|
| 11 |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
| 12 |
print("Loading tokenizer...")
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 14 |
|
| 15 |
+
# 對話歷史記錄
|
| 16 |
+
history = []
|
| 17 |
+
|
| 18 |
+
# 回應函數
|
| 19 |
+
def respond(prompt):
|
| 20 |
+
global history # 使用全域變數存 history
|
| 21 |
+
|
| 22 |
+
# 轉換 history 為 messages 格式
|
| 23 |
+
messages = [{"role": "system", "content": "Answer the question in English only."}]
|
| 24 |
+
|
| 25 |
+
# 加入歷史對話
|
| 26 |
+
for user_text, assistant_text in history:
|
| 27 |
+
messages.append({"role": "user", "content": user_text})
|
| 28 |
+
messages.append({"role": "assistant", "content": assistant_text})
|
| 29 |
+
|
| 30 |
+
# 加入當前輸入
|
| 31 |
+
messages.append({"role": "user", "content": prompt})
|
| 32 |
+
|
| 33 |
+
# 轉換為 tokenizer 需要的格式
|
| 34 |
text = tokenizer.apply_chat_template(
|
| 35 |
messages,
|
| 36 |
tokenize=False,
|
| 37 |
add_generation_prompt=True
|
| 38 |
)
|
| 39 |
+
|
| 40 |
+
# 進行模型推理
|
| 41 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 42 |
generated_ids = model.generate(
|
| 43 |
**model_inputs,
|
|
|
|
| 51 |
]
|
| 52 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 53 |
response = response.replace("<think>", "**THINK**").replace("</think>", "**THINK**").strip()
|
| 54 |
+
|
| 55 |
+
# 更新 history
|
| 56 |
+
history.append((prompt, response))
|
| 57 |
+
|
| 58 |
return response
|
| 59 |
|
| 60 |
+
# 清除歷史記錄
|
| 61 |
+
def clear_history():
|
| 62 |
+
global history
|
| 63 |
+
history = []
|
| 64 |
+
return "History cleared!"
|
| 65 |
+
|
| 66 |
+
# Gradio 介面
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
gr.Markdown("# DeepSeek-R1-Distill-Qwen-1.5B-openvino")
|
| 69 |
+
|
| 70 |
with gr.Tabs():
|
| 71 |
with gr.TabItem("聊天"):
|
| 72 |
chat_if = gr.Interface(
|
|
|
|
| 74 |
inputs=gr.Textbox(label="Prompt", placeholder="請輸入訊息..."),
|
| 75 |
outputs=gr.Textbox(label="Response", interactive=False),
|
| 76 |
api_name="hchat",
|
| 77 |
+
title="DeepSeek-R1-Distill-Qwen-1.5B-openvino(with history)",
|
| 78 |
description="回傳輸入內容的測試 API",
|
| 79 |
)
|
|
|
|
| 80 |
|
| 81 |
+
with gr.Row():
|
| 82 |
+
clear_button = gr.Button("🧹 Clear History")
|
|
|
|
| 83 |
|
| 84 |
+
# 點擊按鈕清除 history
|
| 85 |
+
clear_button.click(fn=clear_history, inputs=[], outputs=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
if __name__ == "__main__":
|
| 88 |
print("Launching Gradio app...")
|
| 89 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|